Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Peters, BJ, Day JMD, Greenwood RC, Hilton DR, Gibson J, Franchi IA.  2017.  Helium–oxygen–osmium isotopic and elemental constraints on the mantle sources of the Deccan Traps. Earth and Planetary Science Letters. 478:245-257.   10.1016/j.epsl.2017.08.042   Abstract

The Deccan Traps, a 65 million-year-old continental flood basalt province located in western India, is the result of one of the largest short-lived magmatic events to have occurred on Earth. The nature and composition of its mantle source(s), however, have been difficult to resolve due to extensive assimilation of continental crust into the ascending Traps magmas. To circumvent this issue, using high-precision electron microprobe analysis, we have analyzed olivine grains from MgO-rich (up to 15.7 wt.%) lavas that likely erupted before substantial crustal assimilation occurred. We compare olivine, pyroxene and plagioclase mineral chemistry and He–O–Os isotope compositions with bulk rock major- and trace-element abundances and 187Os/188Os for both bulk-rocks and mineral separates. Helium isotope compositions for the olivine grains generally show strong influence from crustal assimilation (<3 RA), but one ankaramite from the Pavagadh volcanic complex has a 3He/4He ratio of 10.7 RA, which is slightly lower than the range of 3He/4He measured for present-day Réunion Island volcanism (∼12–14 RA). Olivine-dominated mineral separates span a more restricted range in 187Os/188Os (0.1267 to 0.1443) compared with their host lavas (0.1186 to 0.5010), with the separates reflecting a parental magma composition less affected by lithospheric or crustal interaction than for the bulk-rocks. Despite significant He–Os isotopic variations,Δ17O is relatively invariant (−0.008±0.014‰) and indistinguishable from the bulk mantle, consistent with high-3He/4He hotspots measured to-date. Compositions of olivine grains indicate the presence of up to 25% of a pyroxenite source for Deccan parental magmas, in good agreement with ∼20% predicted from isotopic data for the same samples. Modeled pyroxenite signatures are similar to geochemical signatures expected to arise due to other types of mantle differentiation or due to assimilation of continental crust; however, we show that crustal assimilation cannot account for all of the compositional features of the olivine. Weak correlations exist between a global compilation of Xpx (Deccan: 0.2–0.7) and 3He/4He, δ18O (Deccan olivine: 4.9–5.2‰) and 187Os/188Os. Robust relationships between these parameters may be precluded due to a lack of two-reservoir source mixing, instead involving multiple mantle domains with distinct compositions, or because Xpx may reflect both source features and crustal assimilation. Notwithstanding, geochemical similarities exist between Deccan Traps olivine (3He/4He = 10.7 RA; 187Os/188Osi = 0.1313 ± 45, 2σ) and Réunion igneous rocks (3He/4He = 12–14 RA; 187Os/188Osi = 0.1324 ± 14). These relationships imply that a characteristic geochemical ‘fingerprint’ may have persisted in the mantle plume that fed the Deccan Traps, since its inception at 65 Ma, to ongoing eruptions occurring on Réunion up to the present-day.

Shaw, AM, Hauri EH, Behn MD, Hilton DR, Macpherson CG, Sinton JM.  2012.  Long-term preservation of slab signatures in the mantle inferred from hydrogen isotopes. Nature Geoscience. 5:224-228.   10.1038/ngeo1406   AbstractWebsite

Seismic tomographic images indicate that subducted lithosphere is transported into the deep mantle(1). Petrologic modelling shows that water contained in subducted slabs can be carried to depths of at least 200 km (ref. 2); however, whether the hydrated slab signature is preserved at greater depths depends on diffusion rates. Experimental studies give conflicting results on the question of hydrogen preservation. On a small scale, hydrogen equilibration with ambient mantle should be rapid(3,4), implying that the slab hydrogen signature may not be preserved in the deep mantle(5). However, on large scales the time required for diffusive equilibration is longer and hydrogen anomalies may persist(6,7). Here we present hydrogen and boron data from submarine volcanic glasses erupted in the Manus back-arc basin, southwestern Pacific Ocean. We find that samples with low hydrogen-isotope values also exhibit the geochemical signature of dehydrated, subducted lithosphere. Combined with additional geochemical and geophysical data, we interpret this as direct evidence for the preservation of hydrogen anomalies in an ancient slab in the mantle. Our geochemical data are consistent with experimental estimates of diffusion for the upper mantle(6) and transition zone(7). We conclude that hydrogen anomalies can persist in the mantle without suffering complete diffusive equilibration over timescales of up to a billion years.

Gasparon, M, Hilton DR, Varne R.  1994.  Crustal Contamination Processes Traced by Helium-Isotoped - Examples from the Sunda Arc, Indonesia. Earth and Planetary Science Letters. 126:15-22.   10.1016/0012-821x(94)90239-9   AbstractWebsite

Helium isotope data have been obtained on well-characterised olivine and clinopyroxene phenocrysts and xenocrysts from thirteen volcanic centres located between central Sumatra and Sumbawa in the Sunda arc of Indonesia. Olivine crystals in mantle xenoliths (lherzolite) from Bukit Telor basalts are primitive (Mg# = 90), and their He-3/He-4 value (R/R(A) = 8.8) indicates that the Sumatran mantle wedge is MORB-like in helium isotope composition. All other samples have lower He-3/He-4 ratios ranging from 8.5R(A) to 4.5R(A), with most (thirteen out of eighteen) following a trend of more radiogenic He-3/He-4 values with decreasing Mg#. The only exceptions to this trend are phenocrysts from Batur, Agung and Kerinci, which have MORB-like He-3/He-4 values but relatively low Mg# (Mg# = 70-71), and two highly inclusion-rich clinopyroxenes which have He-3/He-4 values lower than other samples of similar Mg#. The results indicate that crustal contamination unrelated to subduction in the Sunda arc is clearly recorded in the He-3/He-4 characteristics of mafic phenocrysts of subaerial volcanics, and that addition of radiogenic helium is related to low-pressure differentiation processes affecting the melts prior to eruption. These conclusions may have widespread applicability and indicate that helium isotope variations can act as an extremely sensitive tracer of upper crustal contamination.