Export 141 results:
Sort by: Author Title Type [ Year  (Desc)]
Geiger, H, Troll VR, Jolis EM, Deegan FM, Harris C, Hilton DR, Freda C.  2018.  Multi-level magma plumbing at Agung and Batur volcanoes increases risk of hazardous eruptions. Scientific Reports. 8   10.1038/s41598-018-28125-2   AbstractWebsite

The island of Bali in Indonesia is home to two active stratovolcanoes, Agung and Batur, but relatively little is known of their underlying magma plumbing systems. Here we define magma storage depths and isotopic evolution of the 1963 and 1974 eruptions using mineral-melt equilibrium thermobarometry and oxygen and helium isotopes in mineral separates. Olivine crystallised from a primitive magma and has average delta O-18 values of 4.8%. Clinopyroxene records magma storage at the crust-mantle boundary, and displays mantle-like isotope values for Helium (8.62 R-A) and delta O-18 (5.0-5.8%). Plagioclase reveals crystallisation in upper crustal storage reservoirs and shows delta O-18 values of 5.5-6.4%. Our new thermobarometry and isotope data thus corroborate earlier seismic and InSAR studies that inferred upper crustal magma storage in the region. This type of multi-level plumbing architecture could drive replenishing magma to rapid volatile saturation, thus increasing the likelihood of explosive eruptions and the consequent hazard potential for the population of Bali.

Vargas, JA, Hilton DR, Ramirez C, Molina J.  2018.  Metals in bivalve mollusks from the Jaco Scar seep, Pacific, Costa Rica. Revista De Biologia Tropical. 66:S269-S279. AbstractWebsite

Deep sea-research has made significant discoveries thanks to the availability of high resolution bathymetric mapping and vehicles able to reach hydrothermal vents and cold seeps. The Pacific continental margin of Costa Rica includes cold seeps that are inhabited by vesicomyid clams, which are expected to accumulate metals. Data on metals from cold seep clams are scarce. Thus, the objective of this study is to present the concentrations of Al, Cd, Cu, Fe, Pb, Mn, Ni, Sb and Zn in samples from seven clams, a mussel, sediment, and a rock, together with clam morphometric data. The bivalves (Archivesica sp.?) were collected in 2005 at a depth of 1888 m on the Jaco Scar (09 degrees 06' N - 84 degrees 50' W) during DSRV Alvin dive 4129. Metals were analyzed by Flame Atomic Absorption Spectrometry (FAAS) and Graphite Furnace (GFAAS). Concentrations are in mu g/g dry weight. The order of decreasing maximm concentrations and range in tissues of seven clams, were: Zn (43.4 - 266.3) > Fe (27.2 - 100.0) > Al (5.0 - 69.9) > Cd (0.1 - 12.2) > Sn (2.8 - 9.5) > Cu (4.0 - 7.3) > Mn (1.1 - 2.2) > Pb (0.2 - 0.8) > Ni (0.19 - 0.58 ). The gills had the maximum concentrations of Fe and Al. Maximum concentrations in the only mussel specimen collected, were: Zn (80.4 - gills), Fe (70.6 - gills). Cu (31.0 - gills). Al (26.6 - gills), Sn (4.8 - mantle), Mn (1.7 - mantle). Ni (0.97 - muscle), Pb (0.7 - muscle), Cd (0.57 - gills). The sediment sample had: Al (40 800), Fe (26 500), Mn (72.0), Zn (64.7), Cu (29.4), Ni (19.3), Sn (15.5). Pb (2.98), Cd (0.16). A rock fragment had: Fe (15 650), Al (9 240), Mn (170), Sn (99.5), Zn (36.5), Ni (20.4), Cu (13.4), Pb (1.6), Cd (traces). Clam gills concentrated metals such as Fe and Al. Fe was below the range reported for hydrothermal vent clams. while concentrations of other metals were near the lower range. Fe, Cd, Mn, and Pb in mussel tissues were lower than those in mussels from hydrothermal vent sites, while Cu and Zn were within the range. Metals in the sediment and rock samples appeared very rich in certain metals like Al and Fe and very poor in others, such as Cd. There is a paucity of information on metals and pollutants in clams and other macrofaunal species from Costa Rican cold seeps. Data presented herein must be complemented with future studies conducted jointly on the geochemistry, biology. and management of these deep-sea systems.

Haroardottir, S, Halldorsson SA, Hiltons DR.  2018.  Spatial distribution of helium isotopes in Icelandic geothermal fluids and volcanic materials with implications for location, upwelling and evolution of the Icelandic mantle plume. Chemical Geology. 480:12-27.   10.1016/j.chemgeo.2017.05.012   AbstractWebsite

The distribution of helium isotope ratios (He-3/He-4) in Icelandic geothermal fluids, volcanic glasses and phyric lavas is investigated. Along with presenting a new helium isotope dataset using phyric lavas largely from off-rift regions, we compiled published data and constructed a database of all available helium isotope data from Iceland. The new dataset reveals an exceptionally high He-3/He-4 ratio from a phyric lava in NW-Iceland (47.5 R-A, where R-A is the He-3/He-4 ratio of air), which is among the highest values measured in any mantle-derived magma to date. Modifications of primary (i.e., mantle-derived) helium isotope ratios, due to additions of air-derived helium and He from radiogenic ingrowth, were evaluated and the database was filtered accordingly. The geographical information system ArcGIS (ESRI) was used to perform spatial analysis on the filtered database and the interpolation method, Natural Neighbor, was used to calculate representative helium isotope ratios for all parts of Iceland, including off-rift regions. The results show that helium isotope ratios for the whole of Iceland vary from 5.1 to 47.5 R-A. However, this study allows for a fine-scale distinction to be made between individual rift segments and off-rift regions. The results clearly reveal that each rift zone has its own distinctive mean isotope signature: 12-17 R-A in the Western Rift Zone, 8-11 R-A in the Northern Rift Zone and 18-21 R-A in the Eastern Rift Zone. Our isoscape map places new constraints on a previously inferred high-helium plateau region in central Iceland (Breddam a al., 2000). The plateau continues southward along the propagating Eastern Rift Zone and through to the South Iceland Seismic Zone and the Mid-Iceland belt. Its location coincides with many geological features, e.g., eruption rates, location of abandoned rift segments, seismic velocity and gravity anomalies. Such high helium isotope ratios have been associated with undegassed and primordial mantle sources that have been isolated in the lower mantle over Earth's history. Thus, high-helium domains throughout Iceland are interpreted to mark the loci of present and past plume conduits which help explain the considerable spatial variation in the sampling of a primordial mantle He component beneath the Iceland hotspot.

Truong, TB, Castillo PR, Hilton DR, Day JMD.  2018.  The trace element and Sr-Nd-Pb isotope geochemistry of Juan Fernandez lavas reveal variable contributions from a high-3He/4He mantle plume. Chemical Geology. 476:280-291.   10.1016/j.chemgeo.2017.11.024   Abstract

The Juan Fernandez Islands in the southeastern Pacific are an atypical linear volcanic chain that exhibits a considerable range in 3He/4He ratios (8 to 18 RA, where RA is the 3He/4He ratio of air), but limited ranges of 87Sr/86Sr and 143Nd/144Nd. Here we report new trace element abundance data and Sr-Nd-Pb isotope data for mafic lavas previously analyzed for their 3He/4He and He contents from the two main islands of Robinson Crusoe and Alexander Selkirk. Lavas from these islands have been previously grouped based on geochemical and petrological classification into Group I and III basalts, and Group II basanites. In general, samples have overlapping Sr-Nd-Pb isotope compositions that suggest a common, albeit slightly heterogeneous mantle source. In detail, the Group I and III tholeiitic and alkalic basalts have nearly identical incompatible trace element patterns, whereas the Group II basanites show elevated incompatible trace element abundances. Major and incompatible trace element modeling indicates that Group III basalts (3He/4He = 7.8–9.5 RA) from younger Alexander Selkirk Island were produced by the highest degree of partial melting (> 10%) of a common mantle source, followed by Group I basalts (13.6–18.0 RA) and Group II basanites (11.2–12.5 RA) from older Robinson Crusoe Island. The 206Pb/204Pb of Group I basalts and Group II basanites are slightly more radiogenic and limited in range (19.163 to 19.292) compared with those of Group III (18.939 to 19.221). The Group I and II lavas from Robinson Crusoe are consistent with an origin from the so-called focus zone (FOZO) mantle component, whereas the Alexander Selkirk basalts additionally contain contributions from a less-enriched or relatively depleted mantle component. Juan Fernandez lavas reveal limited ranges of Sr-Nd-Pb isotopes but variable 3He/4He as their parental magmas originated mainly from the FOZO component with high 3He/4He (> 9 RA) and variably polluted with a depleted component with lower 3He/4He (ca. 8 RA). Contributions from high-3He/4He mantle sources to ocean island basalts can therefore vary both spatially and temporally, over meter to kilometer lengths and hundred to million-year time scales, and may not be strongly correlated to radiogenic lithophile isotope systematics.

Zheng, G, Ma X, Guo Z, Hilton DR, Xu W, Liang S, Fan Q, Chen W.  2017.  Gas geochemistry and methane emission from Dushanzi mud volcanoes in the southern Junggar Basin, NW China. Journal of Asian Earth Sciences. 149:184-190.   10.1016/j.jseaes.2017.08.023   Abstract

There are many mud volcanoes in the southern margin of the Junggar Basin, northwest China, of which the Dushanzi area is the most typical and active one, emitting large amount of greenhouse gases associated with water and mud. The emitted gas is dominated by methane (average 90.1%), together with other gases, such as ethane (4.84–5.46%), propane (0.06–0.90%), CO2 (0.67–1.0%), and N2 (2.8–3.3%). The carbon (δ13C1) and hydrogen (δD) isotopic ratios of methane are in the ranges of −40.6‰ to −45.0‰ and −221‰ to −249‰, respectively, whereas carbon isotope ratios of ethane (δ13C2) are −25.2‰ to −27.6‰. Based on δ13C values, the released gas is characterized asa thermogenic coal-type and possibly originated from the middle-low Jurassic coal-bearing sequences according to the gas-source correlation and regional geology. Helium isotopes show a crustal source. The methane flux of Dushanzi mud volcanoes from both macro-seepage (craters/vents) and micro-seepage (ground soil exhalation) ranged over the orders of magnitude, from 0.4–2.7kgd−1 and 4950mgm−2d−1 on average, respectively. Positive CH4 fluxes from dry soil were widespread throughout the investigated areas. The total CH4 emission from Dushanzi mud volcanoes is estimated to be at least 22.6tonsa−1, of which about 89% is from micro-seepage surrounding the mud volcano vents.

Peters, BJ, Day JMD, Greenwood RC, Hilton DR, Gibson J, Franchi IA.  2017.  Helium–oxygen–osmium isotopic and elemental constraints on the mantle sources of the Deccan Traps. Earth and Planetary Science Letters. 478:245-257.   10.1016/j.epsl.2017.08.042   Abstract

The Deccan Traps, a 65 million-year-old continental flood basalt province located in western India, is the result of one of the largest short-lived magmatic events to have occurred on Earth. The nature and composition of its mantle source(s), however, have been difficult to resolve due to extensive assimilation of continental crust into the ascending Traps magmas. To circumvent this issue, using high-precision electron microprobe analysis, we have analyzed olivine grains from MgO-rich (up to 15.7 wt.%) lavas that likely erupted before substantial crustal assimilation occurred. We compare olivine, pyroxene and plagioclase mineral chemistry and He–O–Os isotope compositions with bulk rock major- and trace-element abundances and 187Os/188Os for both bulk-rocks and mineral separates. Helium isotope compositions for the olivine grains generally show strong influence from crustal assimilation (<3 RA), but one ankaramite from the Pavagadh volcanic complex has a 3He/4He ratio of 10.7 RA, which is slightly lower than the range of 3He/4He measured for present-day Réunion Island volcanism (∼12–14 RA). Olivine-dominated mineral separates span a more restricted range in 187Os/188Os (0.1267 to 0.1443) compared with their host lavas (0.1186 to 0.5010), with the separates reflecting a parental magma composition less affected by lithospheric or crustal interaction than for the bulk-rocks. Despite significant He–Os isotopic variations,Δ17O is relatively invariant (−0.008±0.014‰) and indistinguishable from the bulk mantle, consistent with high-3He/4He hotspots measured to-date. Compositions of olivine grains indicate the presence of up to 25% of a pyroxenite source for Deccan parental magmas, in good agreement with ∼20% predicted from isotopic data for the same samples. Modeled pyroxenite signatures are similar to geochemical signatures expected to arise due to other types of mantle differentiation or due to assimilation of continental crust; however, we show that crustal assimilation cannot account for all of the compositional features of the olivine. Weak correlations exist between a global compilation of Xpx (Deccan: 0.2–0.7) and 3He/4He, δ18O (Deccan olivine: 4.9–5.2‰) and 187Os/188Os. Robust relationships between these parameters may be precluded due to a lack of two-reservoir source mixing, instead involving multiple mantle domains with distinct compositions, or because Xpx may reflect both source features and crustal assimilation. Notwithstanding, geochemical similarities exist between Deccan Traps olivine (3He/4He = 10.7 RA; 187Os/188Osi = 0.1313 ± 45, 2σ) and Réunion igneous rocks (3He/4He = 12–14 RA; 187Os/188Osi = 0.1324 ± 14). These relationships imply that a characteristic geochemical ‘fingerprint’ may have persisted in the mantle plume that fed the Deccan Traps, since its inception at 65 Ma, to ongoing eruptions occurring on Réunion up to the present-day.

Wang, YP, Hilton DR, Zhou Z, Zheng GD.  2017.  Progress in the Application of Gas Geochemistry to Geothermal, Tectonic and Magmatic Studies. Chemical Geology. 469:1-3.   10.1016/j.chemgeo.2017.08.026   AbstractWebsite

Gas geochemistry and their associated isotope systematics are developing into powerful tools to understand geological/environmental processes and affirm source origins of geo-fluids. In addition to the traditional noble gas indicators, such as He and Ar, other major and trace gases, including CO2, N-2, H-2, CH4, CO, Ne, Kr and Xe - abundances and isotopes - have shown considerable application in many fields of the Earth and Environmental Sciences. For example, key constraints on geochemical processes including the degassing history of the solid Earth to form the atmosphere and oceans, the origin and migration characteristics of natural gas, the scale of climate variability, the P-T characteristics of both subaerial and deep water geothermal reservoirs, and the dynamics of the earthquake cycle, are only a few areas where gas geochemistry has been successfully exploited. Following the 'Frontiers in Gas Geochemistry' Special Issue in this journal (2013), this volume will reflect this diversity in scope and application of gas geochemistry, focusing on geothermal, tectonic and magmatic studies amenable to the gas geochemistry approach.

Guo, W, He H, Hilton DR, Zheng Y, Su F, Liu Y, Zhu R.  2017.  Recycled noble gases preserved in podiform chromitites from Luobusa, Tibet. Chemical Geology. 469:97-109.   10.1016/j.chemgeo.2017.03.026   Abstract

We report noble gas (He, Ne, Ar) signatures of chromite and olivine separates from the Luobusa chromitites in Tibet to better understand the volatile compositions trapped in the minerals, and further to trace the origin of melts responsible for formation of the chromite deposits. The studied samples can be divided into two groups based on petrography and distinct noble gas signatures. Group I samples are free of carbonates and have 3He/4He ratios from 0.81 to 2.36 Ra (where Ra is the 3He/4He ratio of air=1.4×10−6) and air-like Ne and Ar isotopic compositions irrespective of chromitite structure types. Most 3He/4He ratios of Group I samples are higher than air, suggesting apparent presence of mantle volatiles. Given the 4He/20Ne and 3He/36Ar several orders of magnitude higher than air, negligible contributions are from the atmospheric helium. The observed He isotope compositions thus can be regarded as a two-component mixture of mantle-derived and radiogenic He. A broadly positive correlation between 3He and 36Ar in nodular chromitite samples indicates a source mixing between mantle and recycled noble gases but not due to shallow air contamination. In addition, the wide distribution range of 20Ne/36Ar also supports a subduction-related origin of neon and argon. Combined with major element data, the most appropriate tectonic setting to generate such noble gas signatures in Group I samples is subduction zone (probably forearc) where favorable conditions are present for the formation of the chromitites. In contrast, Group II samples containing carbonates have much more radiogenic 3He/4He ratios of 0.03 to 0.3 Ra but much less radiogenic 40Ar/36Ar ratios of 344 to 420. In combination with the occurrence of carbonate veins it is suggested that Group II samples are predominated by supracrustal components that may be imparted during or after the emplacement stage. A comparison of these two group samples indicates that the primary noble gas signatures reflecting the characteristics of ore-forming melts can be preserved in chromite and olivine grains (Group I samples) and thus used to trace the origin of podiform chromitites.

Gao, J, Liu J, Hilton DR, Meng F, Li Z, Zhai L, Sun C, Zhang L.  2017.  The chemical and isotopic compositions of volatiles in magmatic hydrothermal fluids beneath the Songliao Basin, northeastern China. Chemical Geology. 465:11-20.   10.1016/j.chemgeo.2017.05.015   Abstract

It is controversial whether deep fluids can make contributions to natural gas accumulations in the Songliao Basin, NE China. The occurrence of magmatic hydrothermal quartz veins in crystalline basement of the basin provides a way to understand the characteristics of deep fluids and their significance for natural gas accumulation. Three types of fluid inclusions were identified in hydrothermal quartz: aqueous inclusions, H2O-CO2-rich inclusions and H2O-CO2-CH4-rich inclusions. The primary inclusions show high homogenization temperatures (280–433°C) which are typical of magmatic hydrothermal fluids. The oxygen and hydrogen isotopic compositions (δ18O and δD) of water are 2.0‰ to 4.6‰ and −91.6‰ to −75.7‰, respectively. The OH isotopic compositions suggest that hydrothermal fluids associated with the quartz veins were derived from the primary magmatic system and mixed by small amounts of meteoric water. Two types of magmatic hydrothermal volatiles were identified in the study. Both types of volatiles are dominated by CO2. CO2 in type I volatiles shows more negative δ13C values (−13.8‰ to −9.7‰) than typical magmatic CO2, which likely resulted from carbon isotopic fractionation during magma degassing. Type II volatiles have higher δ13C values (−5.5‰ to −3.3‰) and are similar to typical magmatic CO2. Small amounts of hydrocarbons were observed in both types of magmatic hydrothermal fluids. Hydrocarbons in type I volatiles have relatively high δ13CCH4 values (−30.6‰ to −24.1‰) and reversed carbon isotopic trends while hydrocarbons in type II volatiles have more negative δ13CCH4 values (−49.7‰ to −37.6‰) and orderly carbon isotopic trends. CO2 in hydrothermal fluids is a potential source for CO2 gas accumulations. Hydrocarbons in hydrothermal fluids, however, can hardly make significant contributions to the commercial gas reservoirs due to their low concentration.

Stefansson, A, Hilton DR, Sveinbjornsdottir AE, Torssander P, Heinemeier J, Barnes JD, Ono S, Halldorsson SA, Fiebig J, Arnorsson S.  2017.  Isotope systematics of Icelandic thermal fluids. Journal of Volcanology and Geothermal Research. 337:146-164.   10.1016/j.jvolgeores.2017.02.006   AbstractWebsite

Thermal fluids in Iceland range in temperature from <10 degrees C to >440 degrees C and are dominated by water (>97 mol%) with a chloride concentration from <10 ppm to >20,000 ppm. The isotope systematics of the fluids reveal many important features of the source(s) and transport properties of volatiles at this divergent plate boundary. Studies spanning over four decades have revealed a large range of values for delta D (-131 to +3.3%o), tritium (-0.4 to +13.8 TU), delta(18) O(-20.8 to + 2.3%o), He-3/He-4 (3.1 to 30.4 R-A), delta B-11 (-6.7 to+25.0%o), delta C-13 Sigma co(2) (-27.4 to+ 4.6%o), C-1 Sigma co(2), (+0.6 to + 118 pMC), delta C-l3(CH4) (-523 to-17.8%o), delta N-15 (-10.5 to+3.0%o), 8(34)C Sigma s(-ll) (-10.9 to (+)3.4%o), delta S-34(SO4) (-2.0to + 21.2%) and delta Cl-37 (-1.0 to + 2.1%o) in both liquid and vapor phases. Based on this isotopic dataset, the thermal waters originate from meteoric inputs and/or seawater. For other volatiles, degassing of mantle-derived melts contributes to He, CO2 and possibly also to Cl in the fluids. Water-basalt interaction also contributes to CO2 and is the major source of H2S, SO4, Cl and B in the fluids. Redox reactions additionally influence the composition of the fluids, for example, oxidation of H2S to SO4 and reduction of CO2 to CH4. Air water interaction mainly controls N-2, Ar and Ne concentrations. The large range of many non-reactive volatile isotope ratios, such as delta C-13 Sigma co(2)and(34)S Sigma S-u indicate heterogeneity of the mantle and mantle-derived melts beneath Iceland. In contrast, the large range of many reactive isotopes, such as delta C-13 Sigma co(2), and delta S-34 Sigma S-u, are heavily affected by processes occurring within the geothermal systems, including fluid-rock interaction, depressurization boiling, and isotopic fractionation between secondary minerals and the aqueous and vapor species. Variations due to these geothermal processes may exceed differences observed among various crust and mantle sources, highlighting the importance and effects of chemical reactions on the isotope systematics of reactive elements. (C) 2017 Elsevier B.V. All rights reserved.

Budd, DA, Troll VR, Deegan FM, Jolis EM, Smith VC, Whitehouse MJ, Harris C, Freda C, Hilton DR, Halldorsson SA, Bindeman IN.  2017.  Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz. Scientific Reports. 7   10.1038/srep40624   AbstractWebsite

Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic delta O-18 values. Overall, Toba quartz crystals exhibit comparatively high delta O-18 values, up to 10.2%, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in delta O-18 values in outermost growth zones compared to their cores, with values as low as 6.7% (maximum Delta(core-rim) = 1.8%). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-delta O-18 component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-delta O-18 component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

Güleç, N, Hilton DR.  2016.  Turkish geothermal fields as natural analogues of CO2 storage sites: Gas geochemistry and implications for CO2 trapping mechanisms. Geothermics. 64:96-110.   10.1016/j.geothermics.2016.04.008   Abstract

The CO2-He gas systematics of Turkish geothermal systems are modeled to compare and quantify various CO2 trapping mechanisms involved in deep aquifers. We utilize data from geothermal fields from three different tectonic provinces of Turkey: North Anatolian Fault Zone (NAFZ), East Anatolian Fault Zone (EAFZ), and western Anatolia. Our modeling approach distinguishes between possible subsurface processes that control CO2 gas contents in the geothermal systems − mixing, degassing, dissolution, and calcite precipitation. The approach is predicated on selecting pristine gas compositions, which is achieved by eliminating those samples likely to reflect crust-mantle mixing (via CO2/3He vs. R/RA relationships), and shallow-level degassing (via CO2 vs. δ13C relationships). Remaining samples are then used to discriminate between dissolution and calcite precipitation processes using δ13C vs. CO2/3He relationships. Based upon temperature- and pH-dependent fractionation between CO2 and He gases, and carbon isotopes (δ13C), quantitative estimates from Rayleigh fractionation models suggest dissolution as the major CO2 trapping mechanism, accounting for up to 95% of the variations in gas compositions. Calcite precipitation accompanies dissolution at high temperatures characteristic of reservoir conditions, and can stabilize up to 80% of the emplaced CO2 in some instances. The relative contribution of calcite precipitation to CO2 stabilization, however, is generally minor (≤25%) compared to dissolution (≥75%) and appears to change as a complex function of the nature and duration of water-rock interaction along with temperature. As shown by this study, CO2-He systematics provide a promising tool to predict and monitor the behaviour of CO2 in storage systems like geothermal fields which have recently gained interest as prospective storage sites for enhanced geothermal heat recovery projects.

Halldórsson, SA, Barnes JD, Stefánsson A, Hilton DR, Hauri EH, Marshall EW.  2016.  Subducted lithosphere controls halogen enrichments in the Iceland mantle plume source. Geology. 44:679-682.   10.1130/g37924.1   AbstractWebsite

The chlorine isotope composition of Earth’s interior can place strong constraints on deep-Earth cycling of halogens and the origin of mantle chemical heterogeneity. However, all mantle-derived volcanic samples studied for Cl isotopes thus far originate from submarine volcanic systems, where the influence of seawater-derived Cl is pervasive. Here, we present Cl isotope data from subglacial volcanic glasses from Iceland, where the mid-ocean ridge system emerges above sea level and is free of seawater influence. The Iceland data display significant variability in δ37Cl values, from −1.8‰ to +1.4‰, and are devoid of regional controls. The absence of correlations between Cl and O isotope ratios and the lack of evidence for seawater-derived enrichments in Cl indicate that the variation in δ37Cl values in Icelandic basalts can be solely attributed to mantle heterogeneity. Indeed, positive correlations are evident between δ37Cl values and incompatible trace element ratios (e.g., La/Y), and long-lived radiogenic Pb isotope ratios. The data are consistent with the incorporation of altered lithosphere, including the uppermost sedimentary package, subducted into the Iceland mantle plume source, resulting in notable halogen enrichments in Icelandic basalts relative to lavas from adjacent mid-ocean ridges.

Barry, PH, Hilton DR.  2016.  Release of subducted sedimentary nitrogen throughout Earth’s mantle. Geochemical Perspectives Letters. 2:148-159.   10.7185/geochemlet.1615   AbstractWebsite

The dynamic process of subduction represents the principal means to introduce chemical heterogeneities into Earth's interior. In the case of nitrogen (N) - atmosphere's most abundant gas - biological-activity converts N2 into ammonium ions (NH4+), which are chemically-bound within seafloor sediments and altered oceanic crust that comprise the subducting slab. Although some subducted N re-emerges via arc-related volcanism (Sano et al., 1998; Fischer et al., 2002) the majority likely bypasses sub-arc depths (150-200 km) and supplies the deeper mantle (Li et al., 2007; Mitchell et al., 2010; Johnson and Goldblatt, 2015; Bebout et al., 2016). However, the fate of subducted N remains enigmatic: is it incorporated by the shallow convecting mantle - the source of ridge volcanism, or is the deeper mantle - nominally associated with mantle plumes - its ultimate repository? Here, we present N-He-Ne-Ar isotope data for oceanic basalts from the Central Indian Ridge (CIR)-Réunion plume region to address this issue. All on-axis samples with depleted MORB mantle (DMM) affinities (3He/4He = 8 ± 1 RA; Graham, 2002) have low N-isotopes (mean δ15N = -2.1 ‰), whereas those with plume-like 3He/4He display higher values (mean δ15N = 1.3 ‰). We explain these data within the framework of a new mantle reference model to predict a time-integrated net N regassing flux to the mantle of ~3.4 × 1010 mol/yr, with the plume-source mantle representing the preferential destination by a factor of 2-3. The model has implications for the present-day imbalance between N subducted at trenches and N emitted via arc-related volcanism, the N-content of Earth's early atmosphere, as well as relationships between N2 and the noble gases in mantle reservoirs, including 3He/4He-δ15N relationships in plume-derived lavas.

Halldórsson, SA, Hilton DR, Barry PH, Füri E, Grönvold K.  2016.  Recycling of crustal material by the Iceland mantle plume: New evidence from nitrogen elemental and isotope systematics of subglacial basalts. Geochimica et Cosmochimica Acta. 176:206-226.   10.1016/j.gca.2015.12.021   Abstract

We report new nitrogen (N2) abundance and isotope (δ15N) data for 43 subglacial basaltic glasses from the neovolcanic zones of Iceland, a key locality in studies of mantle plume geochemistry and crust–mantle processes. New helium and argon abundance and isotope data are also reported to supplement previous studies (Füri et al., 2010; Barry et al., 2014), allowing elemental ratios (e.g., N2/40Ar∗ where 40Ar∗ = radiogenic 40Ar) to be calculated. Subglacial basaltic glasses with N2 > 2 μcm3 STP/g show a wide range in δ15N values, from −2.91 to +11.96‰ (vs. Air), with values >6‰ only observed at one locality in the Eastern Rift Zone. Elemental ratios involving N2, i.e., N2/3He, and N2/40Ar∗, span several orders of magnitude from 2.5 × 105 to 9.0 × 107, and 32.8 to 1.46 × 106, respectively. In contrast, argon isotope ratios (40Ar/36Ar) are limited, ranging from air-like (∼298.6) values up to 1330. Glasses exhibit a wide range in helium isotope ratios (8–26 RA), with clear distinctions between individual rift segments. A number of processes have extensively modified original mantle source N isotope and relative abundance compositions – most significantly air interaction, crustal contamination in some instances, and possibly degassing-induced fractionation. Under the assumption that the starting 4He/40Ar∗ production ratio of Iceland mantle is identical to the depleted MORB mantle (DMM), a filtering protocol for the entire N dataset, based upon 40Ar/36Ar and 4He/40Ar∗ ratios, was adopted to identify samples with unmodified δ15N values. Consequently, we identify 22 samples that define the Icelandic mantle N-isotope distribution (δ15N = −2.29 to +5.71‰). Using the filtered dataset, we investigate simple binary mixing scenarios involving N2/3He–N2/40Ar∗–δ15N variations to identify mantle end-member compositions. Mixing scenarios are consistent with a recycled component in the Iceland mantle source, defined by a high and heterogeneous δ15N end-member. Moreover, this end-member is coupled to the high 3He/4He signature, and is characterized by He depletion and/or the presence of excess N2. These features strongly suggest the presence of recycled crustal N-component(s) integrated into and/or entrained by the Iceland plume source. These new results reveal the highly heterogeneous nature of nitrogen in the hybrid Iceland plume source, consistent with models based on trace elements and radiogenic isotopes that advocate for significant heterogeneity of recycled crustal component(s) sampled by the Iceland plume. A relatively young age of the recycled crustal material (possibly Phanerozoic) is consistent with the association of positive δ15N values and high N2/40Ar∗ ratios with constraints from radiogenic isotopes (e.g., Pb), thus indicating a relatively short time-interval (∼108 years) between subduction of crustal material and entrainment by the Iceland mantle plume.

Crossey, LJ, Karlstrom KE, Schmandt B, Crow RR, Colman DR, Cron B, Takacs-Vesbach CD, Dahm CN, Northup DE, Hilton DR, Ricketts JW, Lowry AR.  2016.  Continental smokers couple mantle degassing and distinctive microbiology within continents. Earth and Planetary Science Letters. 435:22-30.   10.1016/j.epsl.2015.11.039   Abstract

The discovery of oceanic black (and white) smokers revolutionized our understanding of mid-ocean ridges and led to the recognition of new organisms and ecosystems. Continental smokers, defined here to include a broad range of carbonic springs, hot springs, and fumaroles that vent mantle-derived fluids in continental settings, exhibit many of the same processes of heat and mass transfer and ecosystem niche differentiation. Helium isotope (3He/4He) analyses indicate that widespread mantle degassing is taking place in the western U.S.A., and that variations in mantle helium values correlate best with low seismic-velocity domains in the mantle and lateral contrasts in mantle velocity rather than crustal parameters such as GPS, proximity to volcanoes, crustal velocity, or composition. Microbial community analyses indicate that these springs can host novel microorganisms. A targeted analysis of four springs in New Mexico yield the first published occurrence of chemolithoautotrophic Zetaproteobacteria in a continental setting. These observations lead to two linked hypotheses: that mantle-derived volatiles transit through conduits in extending continental lithosphere preferentially above and at the edges of mantle low velocity domains. High CO2 and other constituents ultimately derived from mantle volatiles drive water–rock interactions and heterogeneous fluid mixing that help structure diverse and distinctive microbial communities.

Newell, DL, Jessup MJ, Hilton DR, Shaw CA, Hughes CA.  2015.  Mantle-derived helium in hot springs of the Cordillera Blanca, Peru: Implications for mantle-to-crust fluid transfer in a flat-slab subduction setting. Chemical Geology. 417:200-209.   10.1016/j.chemgeo.2015.10.003   Abstract

Fault-controlled hot springs in the Cordillera Blanca, Peru provide geochemical evidence of mantle-derived fluids in a modern flat-slab subduction setting. The Cordillera Blanca is an ~ 200 km-long mountain range that contains the highest peaks in the Peruvian Andes, located in an amagmatic reach of the Andean arc. The Cordillera Blanca detachment defines the southwestern edge of the range and records a progression of top-down-to-the-west ductile shear to brittle normal faulting since ~ 5 Ma. Hot springs, recording temperatures up to 78 °C, issue along this fault zone and are CO2-rich, near neutral, alkaline-chloride to alkaline-carbonate waters, with elevated trace metal contents including arsenic (≤ 11 ppm). Water δ18OSMOW (− 14.2 to − 4.9‰) and δDSMOW (− 106.2 to − 74.3‰), trends in elemental chemistry, and cation geothermometry collectively demonstrate mixing of hot (200–260 °C) saline fluid with cold meteoric water along the fault. Helium isotope ratios (3He/4He) for dissolved gases in the waters range from 0.62 to 1.98 RA (where RA = air 3He/4He), indicating the presence of up to 25% mantle-derived helium. Given the long duration since, and large distance to active magmatism in the region, and the possible presence of a tear in the flat slab south of the Cordillera Blanca, we suggest that mantle helium may originate from asthenosphere entering the slab tear, or from the continental mantle-lithosphere, mobilized by metasomatic fluids derived from slab dehydration.

Hallis, LJ, Huss GR, Nagashima K, Taylor JG, Halldórsson SA, Hilton DR, Mottl MJ, Meech KJ.  2015.  Evidence for primordial water in Earth’s deep mantle. Science. 350:795-797.   10.1126/science.aac4834   AbstractWebsite

The hydrogen-isotope [deuterium/hydrogen (D/H)] ratio of Earth can be used to constrain the origin of its water. However, the most accessible reservoir, Earth’s oceans, may no longer represent the original (primordial) D/H ratio, owing to changes caused by water cycling between the surface and the interior. Thus, a reservoir completely isolated from surface processes is required to define Earth’s original D/H signature. Here we present data for Baffin Island and Icelandic lavas, which suggest that the deep mantle has a low D/H ratio (δD more negative than –218 per mil). Such strongly negative values indicate the existence of a component within Earth’s interior that inherited its D/H ratio directly from the protosolar nebula.

Aydın, H, Hilton DR, Güleç N, Mutlu H.  2015.  Post-earthquake anomalies in He–CO2 isotope and relative abundance systematics of thermal waters: The case of the 2011 Van earthquake, eastern Anatolia, Turkey. Chemical Geology. 411:1-11.   10.1016/j.chemgeo.2015.06.019   AbstractWebsite

We report the helium and carbon isotope (3He/4He, δ13C) and relative abundance (CO2/3He) characteristics of hydrothermal gases from eastern Anatolia sampled ~ 1 month after the October 23, 2011 Van earthquake (Mw: 7.2, focal depth: 19 km). Seven sites were sampled which comprise three localities along the Çaldıran Fault Zone, at a distance of 58–66 km to the epicenter (Group I), two localities north of the Çaldıran Fault, about 90–113 km from the epicenter (Group II), and two localities in the vicinity of the historically-active Nemrut Caldera at a distance of 110–126 km from the epicenter (Group III). All sites were previously sampled for their He–CO2 systematics in 2009 (Mutlu et al., 2012) facilitating direct comparison with the post-earthquake dataset. The post-earthquake values cover a wide range of 3He/4He, δ13C and CO2/3He ratios, from 0.84 to 6.37 RA (where RA = air 3He/4He), − 5.30 to + 0.49‰ (vs. VPDB), and 4.9 × 1010 to 6.85 × 1013, respectively. Group I samples show a consistent post-earthquake increase in 3He/4He whereas both Group II localities decreased in 3He/4He. No change was recorded for the two Group III localities. He isotope variations are consistent with simple changes in the proportions of mantle and crustal volatiles, with all Group I sites showing an increase in the mantle He contribution. We hypothesize that the enhanced mantle He signal is derived from asthenospheric melts intruded into the crust, with seismic perturbations responsible for bubble formation and growth leading to overpressure and gas loss. The strike–slip Çaldıran Fault Zone provides the permeable pathway for the liberated volatiles to reach hydrothermal systems at shallow levels of the crust and the surface. Release of crustal He dominates the He mass balance of Group II samples as locations are further from the earthquake epicenter. Group III samples are even further away from the earthquake and show no perturbations in He isotopes. Whereas binary mixing dominates the He isotope systematics, CO2 shows additional effects involving the hydrothermal system. Consequently, changes in the balance between mantle and crustal CO2 are masked and more difficult to discern. The results emphasize the sensitivity of He isotopes to seismic perturbations in the crust and illustrate how location of sampling sites – on permeable segments of faults – and distance from seismic events influence resulting changes involving gas chemistry.

Day, JMD, Barry PH, Hilton DR, Burgess R, Pearson GD, Taylor LA.  2015.  The helium flux from the continents and ubiquity of low-3He/4He recycled crust and lithosphere. Geochimica et Cosmochimica Acta. 153:116-133.   10.1016/j.gca.2015.01.008   Abstract

New helium isotope and trace-element abundance data are reported for pyroxenites and eclogites from South Africa, Siberia, and the Beni Bousera Massif, Morocco that are widely interpreted to form from recycled oceanic crustal protoliths. The first He isotope data are also presented for Archaean peridotites from the Kaapvaal (South Africa), Slave (Canada), and Siberian cratons, along with recently emplaced off-craton peridotite xenoliths from Kilbourne Hole, San Carlos (USA) and Vitim (Siberia), to complement existing 3He/4He values obtained for continental and oceanic peridotites. Helium isotope compositions of peridotite xenoliths vary from 7.3 to 9.6 RA in recently (<10 kyr) emplaced xenoliths, to 0.05 RA in olivine from cratonic peridotite xenoliths of the 1179 Ma Premier kimberlite, South Africa. The helium isotope compositions of the peridotites can be explained through progressive sampling of 4He produced from radiogenic decay of U and Th in the mineral lattice in the older emplaced peridotite xenoliths. Ingrowth of 4He is consistent with generally higher 4He concentrations measured in olivine from older emplaced peridotite xenoliths relative to those from younger peridotite xenoliths. Collectively, the new data are consistent with pervasive open-system behaviour of He in peridotite xenoliths from cratons, mobile belts and tectonically-active regions. However, there is probable bias in the estimate of the helium isotope composition of the continental lithospheric mantle (6.1 ± 2.1 RA), since previously published databases were largely derived from peridotite xenoliths from non-cratonic lithosphere, or phenocrysts/xenocrysts obtained within continental intraplate alkaline volcanics that contain a contribution from asthenospheric sources. Using the new He isotope data for cratonic peridotites and assuming that significant portions (>50%) of the Archaean and Proterozoic continental lithospheric mantle are stable and unaffected by melt or fluid infiltration on geological timescales (>0.1 Ga), and that U and Th contents vary between cratonic lithosphere and non-cratonic lithosphere, calculations yield a 3He flux of 0.25–2.2 atoms/s/cm2 for the continental lithospheric mantle. These estimates differ by a factor of ten from non-cratonic lithospheric mantle and are closer to the observed 3He flux from the continents (<1 atoms/s/cm2). Pyroxenites and eclogites from the continental regions are all characterized by 3He/4He (0.03–5.6 RA) less than the depleted upper mantle, and relatively high U and Th contents. Together with oceanic and continental lithospheric peridotites, these materials represent reservoirs with low time-integrated 3He/(U + Th) in the mantle. Pyroxenites and eclogites are also characterized by higher Fe/Mg, more radiogenic Os–Pb isotope compositions, and more variable δ18O values (∼3‰ to 7‰), compared with peridotitic mantle. These xenoliths are widely interpreted to be the metamorphic/metasomatic equivalents of recycled oceanic crustal protoliths. The low-3He/4He values of these reservoirs and their distinctive compositions make them probable end-members to explain the compositions of some low-3He/4He OIB, and provide an explanation for the low-3He/4He measured in most HIMU lavas. Continental lithospheric mantle and recycled oceanic crust protoliths are not reservoirs for high-3He/4He and so alternative, volumetrically significant, He-rich reservoirs, such as less-degassed (lower?) mantle, are required to explain high-3He/4He signatures measured in some intraplate lavas. Recycling of oceanic crust represents a fundamental process for the generation of radiogenic noble gases in the mantle, and can therefore be used effectively as tracers for volatile recycling.

Fischer, TP, Ramirez C, Mora-Amador RA, Hilton DR, Barnes JD, Sharp ZD, Le Brun M, de Moor JM, Barry PH, Furi E, Shaw AM.  2015.  Temporal variations in fumarole gas chemistry at Pods volcano, Costa Rica. Journal of Volcanology and Geothermal Research. 294:56-70.   10.1016/j.jvolgeores.2015.02.002   AbstractWebsite

We report the chemical and isotopic composition of fumarole gas discharges collected at Pods Volcano, Costa Rica from 2001 to 2014, covering a period during which the volcano experienced a series of phreatic eruptions (March 2006 to October 2014). The relative abundances of Poas C-S-H-O gas species are controlled by reactions involving the SO2-H2S and So-SO2 gas buffers indicating magmatic temperatures of up to 800 degrees C. Although fumarole outlet temperatures are <120 degrees C for most samples, SO2 is the dominant sulfur gas and HCl contents are relatively high. Gas compositional changes within the magma-lake-hydrothermal system likely result from a combination of several processes, including: 1) The injection of new and undegassed magma in late 2000-early 2001,2) the heating of the hydrothermal system, accompanied by gas pressure build-up, and 3) hydrofracturing through 2006. These processes culminated in the phreatic eruptions of 2006 and 2008. Since 2005 the lake level has declined and is now (January 2014) at the lowest level (10 m) since the last periods that it dried out completely (April 1984 and April 1994). The most recent data of 2014 show high level of degassing from the dome fumaroles and the release of HCI-rich and CO2-poor gases implies that the magma injected in late 2000 continues to supply volatiles. Our data show that time series sampling of fumarole gases provides important insights to better understand magmatic and hydrothermal processes at active volcanoes and also to potentially forecast phreatic eruptions. (C) 2015 Elsevier B.V. All rights reserved.

Barry, PH, Hilton DR, Day JMD, Pernet-Fisher JF, Howarth GH, Magna T, Agashev AM, Pokhilenko NP, Pokhilenko LN, Taylor LA.  2015.  Helium isotopic evidence for modification of the cratonic lithosphere during the Permo-Triassic Siberian flood basalt event. Lithos. 216–217:73-80.   10.1016/j.lithos.2014.12.001   Abstract

Major flood basalt emplacement events can dramatically alter the composition of the sub-continental lithospheric mantle (SCLM). The Siberian craton experienced one of the largest flood basalt events preserved in the geologic record — eruption of the Permo-Triassic Siberian flood basalts (SFB) at ~ 250 Myr in response to upwelling of a deep-rooted mantle plume beneath the Siberian SCLM. Here, we present helium isotope (3He/4He) and concentration data for petrologically-distinct suites of peridotitic xenoliths recovered from two temporally-separated kimberlites: the 360 Ma Udachnaya and 160 Ma Obnazhennaya pipes, which erupted through the Siberian SCLM and bracket the eruption of the SFB. Measured 3He/4He ratios span a range from 0.1 to 9.8 RA (where RA = air 3He/4He) and fall into two distinct groups: 1) predominantly radiogenic pre-plume Udachnaya samples (mean clinopyroxene 3He/4He = 0.41 ± 0.30 RA (1σ); n = 7 excluding 1 outlier), and 2) ‘mantle-like’ post plume Obnazhennaya samples (mean clinopyroxene 3He/4He = 4.20± 0.90 RA (1σ); n = 5 excluding 1 outlier). Olivine separates from both kimberlite pipes tend to have higher 3He/4He than clinopyroxenes (or garnet). Helium contents in Udachnaya samples ([He] = 0.13–1.35 μcm3STP/g; n = 6) overlap with those of Obnazhennaya ([He] = 0.05–1.58 μcm3STP/g; n = 10), but extend to significantly higher values in some instances ([He] = 49–349 μcm3STP/g; n = 4). Uranium and thorium contents are also reported for the crushed material from which He was extracted in order to evaluate the potential for He migration from the mineral matrix to fluid inclusions. The wide range in He content, together with consistently radiogenic He-isotope values in Udachnaya peridotites suggests that crustal-derived fluids have incongruently metasomatized segments of the Siberian SCLM, whereas high 3He/4He values in Obnazhennaya peridotites show that this section of the SCLM has been overprinted by Permo-Triassic (plume-derived) basaltic fluids. Indeed, the stark contrast between pre- and post-plume 3He/4He ratios in peridotite xenoliths highlights the potentially powerful utility of He-isotopes for differentiating between various types of metasomatism (i.e., crustal versus basaltic fluids).

Castillo, PR, Hilton DR, Halldórsson SA.  2014.  Trace element and Sr-Nd-Pb isotope geochemistry of Rungwe Volcanic Province, Tanzania: Implications for a superplume source for East Africa Rift magmatism. Frontiers in Earth Science. 2   10.3389/feart.2014.00021   AbstractWebsite

The recently-discovered high, plume-like 3He/4He ratios at Rungwe Volcanic Province (RVP) in southern Tanzania, similar to those at the Main Ethiopian Rift in Ethiopia, strongly suggest that magmatism associated with continental rifting along the entire East African Rift System (EARS) has a deep mantle contribution (Hilton et al., 2011). New trace element and Sr-Nd-Pb isotopic data for high 3He/4He lavas and tephras from RVP can be explained by binary mixing relationships involving Early Proterozoic (±Archaean) lithospheric mantle, present beneath the southern EARS, and a volatile-rich carbonatitic plume with a limited range of compositions and best represented by recent Nyiragongo lavas from the Virunga Volcanic Province also in the Western Rift. Other lavas from the Western Rift and from the southern Kenyan Rift can also be explained through mixing between the same endmember components. In contrast, lavas from the northern Kenyan and Main Ethiopian rifts can be explained through variable mixing between the same mantle plume material and Middle to Late Proterozoic lithospheric mantle, present beneath the northern EARS. Thus, we propose that the bulk of EARS magmatism is sourced from mixing among three endmember sources: Early Proterozoic (±Archaean) lithospheric mantle, Middle to Late Proterozoic lithospheric mantle and a volatile-rich carbonatitic plume with a limited range of compositions. We propose further that the African Superplume, a large, seismically anomalous feature originating in the lower mantle beneath southern Africa, influences magmatism throughout eastern Africa with magmatism at RVP and the Main Ethiopian Rift representing two different heads of a single mantle plume source. This is consistent with a single mantle plume origin of the coupled He-Ne isotopic signatures of mantle-derived xenoliths and/or lavas from all segments of the EARS (Halldórsson et al., 2014).

Barry, PH, Hilton DR, Füri E, Halldórsson SA, Grönvold K.  2014.  Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes. Geochimica et Cosmochimica Acta. 134:74-99.   10.1016/j.gca.2014.02.038   AbstractWebsite

We report new carbon dioxide (CO2) abundance and isotope data for 71 geothermal gases and fluids from both high-temperature (HT > 150 °C at 1 km depth) and low-temperature (LT < 150 °C at 1 km depth) geothermal systems located within neovolcanic zones and older segments of the Icelandic crust, respectively. These data are supplemented by CO2 data obtained by stepped heating of 47 subglacial basaltic glasses collected from the neovolcanic zones. The sample suite has been characterized previously for He–Ne (geothermal) and He–Ne–Ar (basalt) systematics (Füri et al., 2010), allowing elemental ratios to be calculated for individual samples. Geothermal fluids are characterized by a wide range in carbon isotope ratios (δ13C), from −18.8‰ to +4.6‰ (vs. VPDB), and CO2/3He values that span eight orders of magnitude, from 1 × 104 to 2 × 1012. Extreme geothermal values suggest that original source compositions have been extensively modified by hydrothermal processes such as degassing and/or calcite precipitation. Basaltic glasses are also characterized by a wide range in δ13C values, from −27.2‰ to −3.6‰, whereas CO2/3He values span a narrower range, from 1 × 108 to 1 × 1012. The combination of both low δ13C values and low CO2 contents in basalts indicates that magmas are extensively and variably degassed. Using an equilibrium degassing model, we estimate that pre-eruptive basaltic melts beneath Iceland contain ∼531 ± 64 ppm CO2 with δ13C values of −2.5 ± 1.1‰, in good agreement with estimates from olivine-hosted melt inclusions ( Metrich et al., 1991) and depleted MORB mantle (DMM) CO2 source estimates ( Marty, 2012). In addition, pre-eruptive CO2 compositions are estimated for individual segments of the Icelandic axial rift zones, and show a marked decrease from north to south (Northern Rift Zone = 550 ± 66 ppm; Eastern Rift Zone = 371 ± 45 ppm; Western Rift Zone = 206 ± 24 ppm). Notably, these results are model dependent, and selection of a lower δ13C fractionation factor will result in lower source estimates and larger uncertainties associated with the initial δ13C estimate. Degassing can adequately explain low CO2 contents in basalts; however, degassing alone is unlikely to generate the entire spectrum of observed δ13C variations, and we suggest that melt–crust interaction, involving a low δ13C component, may also contribute to observed signatures. Using representative samples, the CO2 flux from Iceland is estimated using three independent methods: (1) combining measured CO2/3He values (in gases and basalts) with 3He flux estimates ( Hilton et al., 1990), (2) merging basaltic emplacement rates of Iceland with pre-eruptive magma source estimates of ∼531 ± 64 ppm CO2, and (3) combining fluid CO2 contents with estimated regional fluid discharge rates. These methods yield CO2 flux estimates from of 0.2–23 × 1010 mol a−1, which represent ∼0.1–10% of the estimated global ridge flux (2.2 × 1012 mol a−1; Marty and Tolstikhin, 1998).

Halldórsson, SA, Hilton DR, Scarsi P, Abebe T, Hopp J.  2014.  A common mantle plume source beneath the entire East African Rift System revealed by coupled helium-neon systematics. Geophysical Research Letters. 41:2014GL059424.   10.1002/2014GL059424   AbstractWebsite

We report combined He-Ne-Ar isotope data of mantle-derived xenoliths and/or lavas from all segments of the East Africa Rift System (EARS). Plume-like helium isotope (3He/4He) ratios (i.e., greater than the depleted MORB mantle (DMM) range of 8 ± 1RA) are restricted to the Ethiopia Rift and Rungwe, the southernmost volcanic province of the Western Rift. In contrast, neon isotope trends reveal the presence of an ubiquitous solar (plume-like) Ne component throughout the EARS, with (21Ne/22Ne)EX values (where (21Ne/22Ne)EX is the air-corrected 21Ne/22Ne ratio extrapolated to Ne-B) as low as 0.034, close to that of solar Ne-B (0.031). Coupling (21Ne/22Ne)EX with 4He/3He ratios indicates that all samples can be explained by admixture between a single mantle plume source, common to the entire rift, and either a DMM or subcontinental lithospheric mantle source. Additionally, we show that the entire sample suite is characterized by low 3He/22NeS ratios (mostly < 0.2)—a feature characteristic of oceanic hot spots such as Iceland. We propose that the origin of these unique noble gas signatures is the deeply rooted African Superplume which influences magmatism throughout eastern Africa. We argue that the Ethiopia and Kenya domes represent two different heads of this common mantle plume source.