Publications

Export 96 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Lubin, D, Wittenmyer RA, Bromwich DH, Marshall GJ.  2008.  Antarctic Peninsula mesoscale cyclone variability and climatic impacts influenced by the SAM. Geophysical Research Letters. 35   10.1029/2007gl032170   AbstractWebsite

The frequency of mesoscale cyclones in the Western Antarctic Peninsula (WAP) region during 1991-94 is correlated with the Southern Hemisphere Annular Mode (SAM) index, most strongly during winter and spring. Also, during periods of positive SAM index polarity there is a shift in the storm tracks to favor more east-bound trajectories, consistent with strengthening of circumpolar westerlies. The presence of mesoscale cyclones is associated with positive near-surface-air temperature anomalies in the WAP region year-round, largest during winter.

Smith, WL, Hansen C, Bucholtz A, Anderson BE, Beckley M, Corbett JG, Cullather RI, Hines KM, Hofton M, Kato S, Lubin D, Moore RH, Rosenhaimer MS, Redemann J, Schmidt S, Scott R, Song S, Barrick JD, Blair JB, Bromwich DH, Brooks C, Chen G, Cornejo H, Corr CA, Ham SH, Kittelman AS, Knappmiller S, LeBlanc S, Loeb NG, Miller C, Nguyen L, Palikonda R, Rabine D, Reid EA, Richter-Menge JA, Pilewswskie P, Shinozuka Y, Spangenberg D, Stackhouse P, Taylor P, Thornhill KL, Van Gilst D, Winstead E.  2017.  ARCTIC RADIATION-ICEBRIDGE SEA AND ICE EXPERIMENT The Arctic Radiant Energy System during the Critical Seasonal Ice Transition. Bulletin of the American Meteorological Society. 98:1399-1426.   10.1175/bams-d-14-00277.1   AbstractWebsite

Through ARISE, NASA acquired unique aircraft data on clouds, atmospheric radiation and sea ice properties during the critical period between the sea ice minimum in late summer and autumn and the commencement of refreezing.

McComiskey, A, Ricchiazzi P, Gautier C, Lubin D.  2006.  Assessment of a three dimensional model for atmospheric radiative transfer over heterogeneous land cover. Geophysical Research Letters. 33   10.1029/2005gl025356   AbstractWebsite

A three-dimensional (3D) atmospheric radiative transfer model that explicitly represents surface albedo heterogeneity is tested against a one-dimensional model and surface irradiance observations in a polar region where land cover heterogeneity is high. For observations located near high latitude coastlines, the contrast between the highly absorbing ocean and reflective snow surface creates spatial heterogeneity, or a 3D effect, around the observation site. The resulting effect on radiation at the sensor should be taken into account when using a solar radiative transfer model to interpret measurements. This assessment shows that better closure is obtained with a three-dimensional model (<= 5%) versus a plane-parallel model (<= 7%). The importance of the surface 3D effect increases with aerosol or cloud optical depth and with surface albedo contrast. The model used here can be implemented at any surface site given the surrounding land cover properties.

Kahn, BH, Irion FW, Dang VT, Manning EM, Nasiri SL, Naud CM, Blaisdell JM, Schreier MM, Yue Q, Bowman KW, Fetzer EJ, Hulley GC, Liou KN, Lubin D, Ou SC, Susskind J, Takano Y, Tian B, Worden JR.  2014.  The Atmospheric Infrared Sounder version 6 cloud products. Atmospheric Chemistry and Physics. 14:399-426.   10.5194/acp-14-399-2014   AbstractWebsite

The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter (D-e), and ice cloud optical thickness (tau) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D-e is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D-e, and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

Lubin, D, Holm-Hansen O.  1995.  Atmospheric ozone and the biological impact of solar ultraviolet radiation. Encyclopedia of environmental biology. Vol. 1, A-E. 1( Nierenberg WA, Ed.).:147-168.: Academic Press Abstract
n/a
B
Tytler, D, O'Meara JM, Suzuki N, Lubin D.  2000.  Big bang nucleosynthesis. Nuclear Physics B-Proceedings Supplements. 87:464-473.   10.1016/s0920-5632(00)00721-0   AbstractWebsite

Big Bang Nucleosynthesis (BBN) is the synthesis of the light nuclei, Deuterium (D or H-2), He-3, He-4 and Li-7 during the first few minutes of the universe. This review concentrates on recent improvements in the measurement of the primordial (after BBN, and prior to modification) abundances of these nuclei.

Podgorny, I, Lubin D.  1998.  Biologically active insolation over Antarctic waters: Effect of a highly reflecting coastline. Journal of Geophysical Research-Oceans. 103:2919-2928.   10.1029/97jc02763   AbstractWebsite

Near an Antarctic coastline or sea ice edge, multiple reflection of photons between the high-albedo surface and a cloud will increase the downwelling surface insolation not only over the high-albedo surface itself but also out over the adjacent open water. This insolation enhancement is examined with a Monte Carlo radiative transfer model. The insolation enhancement extends to a typical distance of 4 km out to sea, with the most important effects being within 2 km of the coastline. The strength of the multiple reflection effect depends primarily on cloud base height and cloud optical depth and only slightly on cloud geometrical thickness. The insolation enhancement is also a function of wavelength, being larger for ultraviolet wavelengths than for the visible. This is due to a slightly greater contribution from Rayleigh scattering at the shorter wavelengths, although at ultraviolet wavelengths where ozone absorption is strong, tropospheric ozone absorption can offset the Rayleigh scattering contribution at larger cloud optical depths. On the basis of the limited range of the multiple reflection effect (2-4 km out to sea) the insolation enhancement due to the high-albedo coastline is unlikely to be a major influence on the primary productivity of all Antarctic waters; however, it may influence phytoplankton blooms near the coast and photobiological experiments carried out at coastal research stations. Also, the insolation enhancement may have significance in sea ice leads and polynyas.

Frederick, JE, Lubin D.  1988.  The Budget of Biologically-Active Ultraviolet-Radiation in the Earth-Atmosphere System. Journal of Geophysical Research-Atmospheres. 93:3825-3832.   10.1029/JD093iD04p03825   AbstractWebsite

This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the Earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 320 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective path length of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.

C
Lubin, D, Vogelmann AM.  2006.  A climatologically significant aerosol longwave indirect effect in the Arctic. Nature. 439:453-456.   10.1038/nature04449   AbstractWebsite

The warming of Arctic climate and decreases in sea ice thickness and extent(1,2) observed over recent decades are believed to result from increased direct greenhouse gas forcing, changes in atmospheric dynamics having anthropogenic origin(3-5), and important positive reinforcements including ice - albedo and cloud - radiation feedbacks(6). The importance of cloud - radiation interactions is being investigated through advanced instrumentation deployed in the high Arctic since 1997 (refs 7, 8). These studies have established that clouds, via the dominance of longwave radiation, exert a net warming on the Arctic climate system throughout most of the year, except briefly during the summer(9). The Arctic region also experiences significant periodic influxes of anthropogenic aerosols, which originate from the industrial regions in lower latitudes(10). Here we use multisensor radiometric data(7,8) to show that enhanced aerosol concentrations alter the microphysical properties of Arctic clouds, in a process known as the 'first indirect' effect(11,12). Under frequently occurring cloud types we find that this leads to an increase of an average 3.4 watts per square metre in the surface longwave fluxes. This is comparable to a warming effect from established greenhouse gases and implies that the observed longwave enhancement is climatologically significant.

Wilson, A, Scott RC, Cadeddu MP, Ghate V, Lubin D.  2018.  Cloud optical properties over West Antarctica from shortwave spectroradiometer measurements during AWARE. Journal of Geophysical Research-Atmospheres. 123:9559-9570.   10.1029/2018jd028347   AbstractWebsite

A shortwave spectroradiometer was deployed on the West Antarctic Ice Sheet (WAIS) as part of the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program ARM West Antarctic Radiation Experiment (AWARE). This instrument recorded 1-min averages of downwelling hemispheric spectral irradiance covering the wavelength range 350-2,200nm with spectral resolution 3 and 10nm for wavelengths shorter and longer than 1,000nm, respectively. Using simultaneous micropulse lidar data to identify the thermodynamic phase of stratiform clouds, a radiative transfer algorithm is used to retrieve optical depth and effective droplet (or particle) size for single-phase liquid water and ice water clouds. The AWARE campaign on the WAIS first sampled typical climatological conditions between 7 December 2015 and 9 January 2016 and then a much warmer air mass with more moisture associated with a surface melt event between 10 and 17 January 2016. Before the melt event most liquid cloud effective droplet radii were consistent with pristine polar maritime clouds (mode radius 13.5m) but showed a second local maximum in the distribution (at 8m) consistent with colder, moisture-limited conditions. Most ice clouds sampled occurred before the melt event (mode optical depth 4 and effective particle size 19m). During the melt event liquid water cloud optical depth nearly doubled (mode value increasing from 8 to 14). AWARE therefore sampled on the WAIS two cases relevant to climate model simulations: typical current climatological conditions, followed by warmer meteorology possibly consistent with future increasing surface melt scenarios.

Mulmenstadt, J, Lubin D, Russell LM, Vogelmann AM.  2012.  Cloud properties over the North Slope of Alaska: Identifying the prevailing meteorological regimes. Journal of Climate. 25:8238-8258.   10.1175/jcli-d-11-00636.1   AbstractWebsite

Long time series of Arctic atmospheric measurements are assembled into meteorological categories that can serve as test cases for climate model evaluation. The meteorological categories are established by applying an objective k-means clustering algorithm to 11 years of standard surface-meteorological observations collected from 1 January 2000 to 31 December 2010 at the North Slope of Alaska (NSA) site of the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM). Four meteorological categories emerge. These meteorological categories constitute the first classification by meteorological regime of a long time series of Arctic meteorological conditions. The synoptic-scale patterns associated with each category, which include well-known synoptic features such as the Aleutian low and Beaufort Sea high, are used to explain the conditions at the NSA site. Cloud properties, which are not used as inputs to the k-means clustering, are found to differ significantly between the regimes and are also well explained by the synoptic-scale influences in each regime. Since the data available at the ARM NSA site include a wealth of cloud observations, this classification is well suited for model observation comparison studies. Each category comprises an ensemble of test cases covering a representative range in variables describing atmospheric structure, moisture content, and cloud properties. This classification is offered as a complement to standard case-study evaluation of climate model parameterizations, in which models are compared against limited realizations of the Earth atmosphere system (e.g., from detailed aircraft measurements).

Lubin, D, Harper DA.  1996.  Cloud radiative properties over the South Pole from AVHRR infrared data. Journal of Climate. 9:3405-3418.   10.1175/1520-0442(1996)009<3405:crpots>2.0.co;2   AbstractWebsite

Over the Antarctic plateau, the radiances measured by the AVHRR middle infrared (11 and 12 mu m) channels are shown to depend on effective cloud temperature, emissivity, ice water path, and effective radius of the particle size distribution. The usefulness of these dependencies is limited by radiometric uncertainties of up to 2 K in brightness temperature and by the fact that the radiative transfer solutions are not single valued over all possible ranges of temperature, effective radius, and ice water path. Despite these limitations, AVHRR imagery can be used to characterize cloud optical properties over the Antarctic continent if surface weather observations and/or radiosonde data can be collocated with the satellite overpasses. From AVHRR imagery covering the South Pole during 1992, the mean cloud emissivity is estimated at 0.43 during summer and 0.37 during winter, while the mean summer and winter effective radii are estimated at 12.3 and 5.6 mu m, respectively. When a radiative transfer model is used to evaluate these results in comparison with surface pyrgeometer measurements, the comparison suggests that the AVHRR retrieval method captures the overall seasonal behavior in cloud properties. During months when the polar vortex persists, AVHRR infrared radiances may be noticeably influenced by polar stratospheric clouds.

Ricchiazzi, P, Gautier C, Lubin D.  1995.  Cloud Scattering Optical Depth and Local Surface Albedo in the Antarctic - Simultaneous Retrieval Using Ground-Based Radiometry. Journal of Geophysical Research-Atmospheres. 100:21091-21104.   10.1029/95jd01461   AbstractWebsite

We have used solar irradiance measurements from a ground-based multichannel radiometer system deployed at Palmer Station, Antarctica (64 degrees 46'S, 64 degrees 04'W), during spring 1991 to simultaneously estimate cloud scattering optical depth and surface albedo. Irradiance measurements at 410 and 630 nm, in conjunction with a discrete ordinate radiative transfer (RT) model, enable this simultaneous retrieval by exploiting the wavelength dependence in Rayleigh scattering strength. The RT model is used in an inverse mode to find the values of surface albedo and cloud optical depth that match calculated and measured irradiances at both wavelengths. Under the homogeneous stratiform cloud cover for which the technique applies, surface albedo at 630 nm was consistently retrieved at above 0.9. For most homogeneous, overcast conditions, cloud optical depth (at 630 nm) is found to be in the range 20-50, with a most probable value of 25. This measurement and retrieval technique should be useful for compiling high-latitude cloud opacity and surface albedo climatologies of interest for global change and photobiology research.

Lubin, D, Frederick JE.  1990.  Column Ozone Measurements from Palmer-Station, Antarctica - Variations During the Austral Springs of 1988 and 1989. Journal of Geophysical Research-Atmospheres. 95:13883-13889.   10.1029/JD095iD09p13883   AbstractWebsite

The National Science Foundation scanning spectroradiometer at Palmer Station, Antarctica (64°46′S, 64°04′W), provides hourly ground-based measurements of solar ultraviolet (UV) irradiance. In addition to defining the UV radiation environment of the region, these measurements allow the derivation of the column density of atmospheric ozone above the station nearly every daylight hour. This hourly time resolution, not generally available from other methods of monitoring Antarctic ozone abundances, enables the detection of large and rapid changes in total column ozone and UV surface irradiance associated with the dynamics of the polar vortex. Column ozone abundance is derived from a ratio of measured irradiances at 300 and 313.5 nanometers (nm) by means of theoretical calculation of this ratio as a function of total ozone amount. Noontime ozone abundances over Palmer Station obtained from this method agree with those obtained by the Total Ozone Mapping Spectrometer (TOMS) instrument aboard Nimbus 7 to within about 10% throughout the austral spring of 1988. Ozone recovery at Palmer Station, associated with the breakup of the polar vortex as indicated by TOMS satellite ozone observations, occurred rapidly within a 24-hour period beginning in midafternoon on November 15. Over the Antarctic Peninsula, the 1989 ozone depletion was slightly greater than in 1988, the minimum noontime ozone abundances over Palmer Station as measured by the spectroradiometer being 194 and 166 Dobson units for October 14, 1988, and October 14, 1989, respectively. The 1989 ozone depletion however ended by November 5 over the Antarctic Peninsula, 10 days earlier than the 1988 event.

Lubin, D, Mitchell BG, Frederick JE, Alberts AD, Booth CR, Lucas T, Neuschuler D.  1992.  A Contribution toward Understanding the Biospherical Significance of Antarctic Ozone Depletion. Journal of Geophysical Research-Atmospheres. 97:7817-7828.   10.1029/91JD01400   AbstractWebsite

Measurements of biologically active UV radiation made by the National Science Foundation (NSF) scanning spectroradiometer (UV-monitor) at Palmer Station. Antarctica, during the Austral springs of 1988, 1989, and 1990 are presented and compared. Column ozone abundance above Palmer Station is computed from these measurements using a multiple wavelength algorithm. Two contrasting action spectra (biological weighting functions) are used to estimate the biologically relevant (dose from the spectral measurements: a standard weighting function for damage to DNA, and a new action spectrum representing the potential for photosynthesis inhibition in Antarctic phytoplankton. The former weights only UV-B wavelengths (280-320 nm) and gives the most weight to wavelengths shorter than 300 nm, while the latter includes large contributions out to 355 nm. The latter is the result of recent Antarctic field work and is relevant in that phytoplankton constitute the base of the Antarctic food web. The modest ozone hole of 1988, in which the ozone abundance above Palmer Station never fell below 200 Dobson units (DU), brought about summerlike doses of DNA-effective UV radiation 2 months early, but UV doses which could inhibit photosynthesis in phytoplankton did not exceed a clear-sky "maximum normal" dose for that time of year. The severe ozone holes of 1989 and 1990, in which the ozone abundance regularly fell below 200 DU, brought about increases in UV surface irradiance weighted by either action spectrum. Ozone abundances and dose-weighted irradiances provided by the NSF UV-monitor are used to derive the radiation amplification factors (RAFs) for both DNA-effective irradiance and phytoplankton-effective irradiance. The RAF for DNA-effective irradiance is nonlinear in ozone abundance and is in excess of the popular "two for one" rule, while the RAF for phytoplankton-effective irradiance approximately follows a "one for one" rule.

Xiong, XZ, Lubin D, Li W, Stamnes K.  2002.  A critical examination of satellite cloud retrieval from AVHRR in the Arctic using SHEBA data. Journal of Applied Meteorology. 41:1195-1209.   10.1175/1520-0450(2002)041<1195:aceosc>2.0.co;2   AbstractWebsite

This study examines the validity and limitations associated with retrieval of cloud optical depth tau and effective droplet size r(e) in the Arctic from Advanced Very High Resolution Radiometer ( AVHRR) channels 2 (0.725-1.10 mum), 3 (3.55-3.93 mum), and 4 (10.3-11.3 mum). The error in r(e) is found to be normally less than 10%, but the uncertainty in tau can be more than 50% for a 10% uncertainty in the satellite- measured radiance. Model simulations show that the satellite- retrieved cloud optical depth tau(sat) is overestimated by up to 20% if the vertical cloud inhomogeneity is ignored and is underestimated by more than 50% if overlap of cirrus and liquid water clouds is ignored. Under partially cloudy conditions, tau(sat) is larger than that derived from surface-measured downward solar irradiance (tau(surf)) by 40%-130%, depending on cloud-cover fraction. Here, tau(sat) derived from NOAA-14 AVHRR data agrees well with tau(surf) derived from surface measurements of solar irradiance at the Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp in summer, but tau(sat) is about 2.3 times tau(surf) before the onset of snowmelt. This overestimate of tau(sat) is mainly due to the high reflectivity in AVHRR channel 2 over snow/ ice surfaces, the presence of partial cloud cover, and inaccurate representation of the scattering phase function for mixed-phase clouds.

D
Xiong, XZ, Storvold R, Stamnes K, Lubin D.  2004.  Derivation of a threshold function for the Advanced Very High Resolution Radiometer 3.75 mu m channel and its application in automatic cloud discrimination over snow/ice surfaces. International Journal of Remote Sensing. 25:2995-3017.   10.1080/01431160310001619553   AbstractWebsite

The distinct contrast between the reflectance of solar radiation in Advanced Very High Resolution Radiometer (AVHRR) channel 3 (3.75 mum) by clouds and by bright surfaces provides an effective means of cloud discrimination over snow/ice surfaces. A threshold function for the top-of-atmosphere (TOA) albedo in channel 3 (r(3)) is derived and used to develop an improved method for cloud discrimination over snow/ice surfaces that makes explicit use of TOA r(3) . Corrections for radiance anisotropy and temperature effects are required to derive accurate values of r(3) from satellite measurements and to utilize the threshold function. It has been used to retrieve cloud cover fractions from National Oceanic and Atmospheric Administration (NOAA)-14 AVHRR data over the Arctic Ocean and over the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska. The retrieved cloud fractions are in good agreement with SHEBA (Surface HEat Budget of the Arctic Ocean) surface visual observations and with NSA cloud radar and lidar observations, respectively. This method can be utilized to improve cloud discrimination over snow/ice surfaces for any satellite sensor with a channel near 3.7 mum.

Collins, WD, Bucholtz A, Flatau P, Lubin D, Valero FPJ, Weaver CP, Pilewski P.  2000.  Determination of surface heating by convective cloud systems in the central equatorial Pacific from surface and satellite measurements. Journal of Geophysical Research-Atmospheres. 105:14807-14821.   10.1029/2000jd900109   AbstractWebsite

The heating of the ocean surface by longwave radiation from convective clouds has been estimated using measurements from the Central Equatorial Pacific Experiment (CEPEX). The ratio of the surface longwave cloud forcing to the cloud radiative forcing on the total atmospheric column is parameterized by the f factor. The f factor is a measure of the partitioning of the cloud radiative effect between the surface and the troposphere. Estimates of the f factor have been obtained by combining simultaneous observations from ship, aircraft, and satellite instruments. The cloud forcing near the ocean surface is determined from radiometers on board the National Oceanic and Atmospheric Administration P-3 aircraft and the R/V John Vickers. The longwave cloud forcing at the top of the atmosphere has been estimated from data obtained from the Japanese Geostationary Meteorological Satellite GMS 4. A new method for estimating longwave fluxes from satellite narrowband radiances is described. The method is based upon calibrating the satellite radiances against narrowband and broadband infrared measurements from the high-altitude NASA ER-2 aircraft. The average value of f derived from the surface and satellite observations of convective clouds is 0.15 +/- 0.02. The area-mean top-of-atmosphere longwave forcing by convective clouds in the region 10 degrees S-10 degrees N, 160 degrees E-160 degrees W is 40 W/m(2) during CEPEX. Those results indicate that the surface longwave forcing by convective clouds was approximately 5 W/m(2) in the central equatorial Pacific and that this forcing is the smallest radiative component of the surface energy budget.

Tytler, D, O'Meara JM, Suzuki N, Lubin D.  2000.  Deuterium and the baryonic density of the universe. Physics Reports-Review Section of Physics Letters. 333:409-432.   10.1016/s0370-1573(00)00032-6   AbstractWebsite

Big bang nucleosynthesis (BBN) is the creation of the light nuclei, deuterium, He-3, He-4 and Li-7 during the first few minutes of the universe. Here we discuss recent measurements of the D to H abundance ratio, D/H, in our galaxy and towards quasars. We have achieved an order of magnitude improvement in the precision of the measurement of primordial D/H, using the HIRES spectrograph on the W. M. Keck telescope to measure D in gas with very nearly primordial abundances towards quasars. From 1994 to 1996, it appeared that there could be a factor of 10 range in primordial D/H, but today four examples of low D are secure. High D/H should be much easier to detect, and since there are no convincing examples, it must be extremely rare or non-existent. All data are consistent with a single low value for D/H, and the examples which are consistent with high D/H are readily interpreted as H contamination near the position of D. The new D/H measurements give the most accurate value for the baryon-to-photon ratio, eta, and hence the cosmological baryon density. A similar density is required to explain the amount of Ly alpha absorption from neutral hydrogen in the intergalactic medium (IGM) at redshift z similar or equal to 3, and to explain the fraction of baryons in local clusters of galaxies. The D/H measurements lead to predictions for the abundances of the other light nuclei, which generally agree with measurements. The remaining differences with some measurements can be explained by a combination of measurement and analysis errors or changes in the abundances after BBN. The measurements do not require physics beyond the standard BBN model. Instead, the agreement between the abundances is used to limit the non-standard physics. (C) 2000 Elsevier Science B.V. All rights reserved.

O'Meara, JM, Tytler D, Kirkman D, Suzuki N, Prochaska JX, Lubin D, Wolfe AM.  2001.  The deuterium to hydrogen abundance ratio toward a fourth QSO: HS 0105+1619. Astrophysical Journal. 552:718-730.   10.1086/320579   AbstractWebsite

We report the measurement of the primordial D/H abundance ratio toward QSO HS 0105+1619. The column density of the neutral hydrogen in the z similar or equal to 2.536 Lyman limit system is high, log N-HI = 19.422 +/- 0.009 cm(-2), allowing for the deuterium to be seen in five Lyman series transitions. The measured value of the D/H ratio toward QSO HS 0105 + 1619 is found to be D/H = 2.54 +/- 0.23 x 10(-5). The metallicity of the system showing D/H is found to be similar or equal to 0.01 solar, indicating that the measured D/H is the primordial D/H within the measurement errors. The gas that shows D/H is neutral, unlike previous D/H systems that were more highly ionized. Thus, the determination of the D/H ratio becomes more secure since we are measuring it in different astrophysical environments, but the error is larger because we now see more dispersion between measurements. Combined with prior measurements of D/H, the best D/H ratio is now D/H = 3.0 +/- 0.4 x 10(-5), which is 10% lower than the previous value. The new values for the baryon-to-photon ratio and baryonic matter density derived from D/H are eta = 5.6 +/- 0.5 x 10(-10) and Omega (b), h(2) = 0.0205 +/- 0.0018, respectively.

Jayaraman, A, Lubin D, Ramachandran S, Ramanathan V, Woodbridge E, Collins WD, Zalpuri KS.  1998.  Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January-February 1996 pre-INDOEX cruise. Journal of Geophysical Research-Atmospheres. 103:13827-13836.   10.1029/98jd00559   AbstractWebsite

Simultaneous measurements of aerosol optical depth, size distribution, and incoming solar radiation flux were conducted with spectral and broadband radiometers over the coastal Indian region, Arabian Sea, and Indian Ocean in January-February 1996. Columnar aerosol optical depth, delta a, at visible wavelengths was found to be 0.2-0.5 over the Arabian Sea and <0.1 over the equatorial Indian Ocean. Aerosol mass concentration decreased from about 80 mu g/m(3) near the coast to just a few mu g/m(3) over the interior ocean. The sub-micron-size particles showed more than an order of magnitude increase in number concentration near the coast versus the interior ocean. This large gradient in particle concentration was consistent with a corresponding large increase in the Sun-photometer-derived Angstrom exponent, which increased from 0.2 over the Indian Ocean to about 1.4 near the coast. The change in surface-reaching solar flux with delta a was obtained for both the direct and the global solar flux in the visible spectral region. The solar-zenith-angle-normalized global and diffuse fluxes vary almost linearly with normalized delta a. The direct visible (<780 nm) solar flux decreases by about 42 +/- 4 Wm(-2) and the diffuse sky radiation increases by about 30 +/- 3 Wm(-2) with every 0.1 increase in delta a, for solar zenith angles smaller than 60 degrees. For the same extinction optical depth the radiative forcing of the coastal aerosols is larger than the open ocean aerosol forcing by a factor of 2 or larger.

E
Lubin, D, Jensen EH.  1995.  Effects of Clouds and Stratospheric Ozone Depletion on Ultraviolet-Radiation Trends. Nature. 377:710-713.   10.1038/377710a0   AbstractWebsite

ANTHROPOGENIC depletion of ozone in the lower stratosphere has been of global environmental concern for two decades, but the environmentally relevant quantity-the flux of solar ultraviolet radiation (UVR) reading the Earth's surface-remains poorly quantified on a global basis. The three most important parameters governing surface UVR fluxes and trends are solar elevation, total vertically integrated ozone abundance and cloud opacity. Here we use global satellite measurements of total ozone abundance and cloud reflectance to examine how the trends in UVR resulting from established trends in total ozone abundance(1,2) compare with the potentially large natural variability in UVR that results from variations in cloud opacity. We find that throughout many temperate regions-including large parts of continental Europe, North and South America, New Zealand, Australia and southern Africa-interannual variability in cloud opacity is sufficiently small that by the end of this century, trends in summer average local-noon UVR dose rates relevant to mammalian skin cancer or plant damage should be significant with respect to cloud variability.

Xiong, XZ, Li W, Lubin D, Stamnes K.  2002.  Evaluating the principles of cloud remote sensing with AVHRR and MAS imagery over SHEBA. Journal of Geophysical Research-Oceans. 107   10.1029/2000jc000424   AbstractWebsite

[1] A rigorous discrete ordinates radiative transfer formulation has been applied to two Advanced Very High Resolution Radiometer (AVHRR) images extracted from telemetry collected by the CCGS Des Groseilliers satellite tracking system during SHEBA to estimate cloud optical depth and effective radius of the cloud droplet size distribution. The two cases, from 2 and 3 June 1998, were chosen for analysis because (1) the images contained mostly liquid water clouds and (2) contemporaneous MODIS Airborne Simulator (MAS) overflight imagery was available for these AVHRR overpasses. The objective is to apply the same detailed radiative transfer formulation to both the MAS and AVHRR data so that the quality of the retrievals from the latter can be evaluated. Retrievals of cloud optical properties from MAS are assumed to be more reliable, because (1) all MAS channels have direct radiometric calibration, (2) the higher spatial resolution of MAS (50 m nadir versus 1.1 km nadir with AVHRR) should yield smaller uncertainties related to partially cloudy pixels in a given study area, and (3) effective droplet radius can be retrieved directly from the MAS 1.62-mum m channel without additional uncertainties involved with subtracting a thermal radiance component. Examination of the retrievals from both sensors in these two cases reveals considerable spatial variability (more than a factor of 2) in cloud optical depth, on a variety of scales ranging from tens of meters to tens of kilometers, even for relatively uniform liquid water clouds. Retrievals of cloud effective droplet radius from AVHRR are generally consistent with those from MAS, suggesting that AVHRR can be reliably used to estimate this quantity. However, AVHRR-based retrievals of cloud optical depth are subject to large errors that result from small uncertainties in the absolute radiometric calibration of AVHRR channel 2. Using recalibration coefficients from one of the more robust AVHRR postlaunch calibration efforts, the cloud optical depths that we retrieved from NOAA 14 AVHRR channel 2 are consistently 30-50% larger than those obtained from MAS. The intercomparison of MAS and AVHRR retrievals of cloud optical depth also revealed errors with AVHRR due to partial cloud cover, and these errors are not immediately apparent when examining the AVHRR retrievals alone. If the AVHRR retrievals are averaged to spatial resolutions of order 10-30 km, they appear to become more stable for use in applications such as atmospheric energy budget calculations.

Lubin, D, Morrow E.  1998.  Evaluation of an AVHRR cloud detection and classification method over the Central Arctic Ocean. Journal of Applied Meteorology. 37:166-183.   10.1175/1520-0450(1998)037<0166:eoaacd>2.0.co;2   AbstractWebsite

A cloud classification method that uses both multispectral and textural features with a maximum likelihood discriminator is applied to full-resolution AVHRR (Advanced Very High Resolution Radiometer) data from 100 NOAA polar-orbiter overpasses tracked from an icebreaker during the 1994 Arctic Ocean Section. The cloud classification method is applied to the 32 x 32 pixel cell centered about the ship's position during each overpass. These overpasses have matching surface weather observations in the form of all-sky photographs or, during a period of heavy weather, an objective record that the sky was overcast with low water clouds. The cloud classifications from the maximum likelihood method are compared with the surface weather observations to determine if the automated satellite cloud classifier actually produces realistic descriptions of the scene. These comparisons are favorable in most cases, with the exception of a frequent error in which the classifier confuses Ci/Cc/Ac with extensive low water clouds over sea ice. This overall evaluation does not change appreciably if global area coverage resolution is used instead of full resolution or if the authors attempt to recalibrate the data to the NOAA-7 data for which the algorithm was originally developed. The authors find that the Ci/Cc/Ac cloud error can usually be avoided by 1) modifying the textural feature values for some cloud-over-ice categories and 2) applying a threshold value of 30% to the AVHRR channel 2 albedo averaged over the cell (and normalized by the cosine of the solar zenith angle). For a cell that the classifier identifies as containing Ci/Cc/Ac over sea ice, a cell-average channel 2 albedo greater than 30% usually indicates that the cell instead contains extensive low water clouds. When compared to the surface weather observations, the skill score of the satellite cloud classifier thus modified is 81%, which is very close to that claimed by its original author, This study suggests that satellite cloud detection and classification schemes based on both spectral signatures and texture recognition may indeed yield realistic results.

Lubin, D, Vogelmann AM.  2007.  Expected magnitude of the aerosol shortwave indirect effect in springtime Arctic liquid water clouds. Geophysical Research Letters. 34   10.1029/2006gl028750   AbstractWebsite

Radiative transfer simulations are used to assess the expected magnitude of the diurnally-averaged shortwave aerosol first indirect effect in Arctic liquid water clouds, in the context of recently discovered longwave surface heating of order 3 to 8 W m(-2) by this same aerosol effect detected at the Barrow, Alaska, ARM Site. We find that during March and April, shortwave surface cooling by the first indirect effect is comparable in magnitude to the longwave surface heating. During May and June, the shortwave surface cooling exceeds the longwave heating. Due to multiple reflection of photons between the snow or sea ice surface and cloud base, the shortwave first indirect effect may be easier to detect in surface radiation measurements than from space.