Publications

Export 8 results:
Sort by: Author [ Title  (Asc)] Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Lubin, D, Vogelmann AM.  2006.  A climatologically significant aerosol longwave indirect effect in the Arctic. Nature. 439:453-456.   10.1038/nature04449   AbstractWebsite

The warming of Arctic climate and decreases in sea ice thickness and extent(1,2) observed over recent decades are believed to result from increased direct greenhouse gas forcing, changes in atmospheric dynamics having anthropogenic origin(3-5), and important positive reinforcements including ice - albedo and cloud - radiation feedbacks(6). The importance of cloud - radiation interactions is being investigated through advanced instrumentation deployed in the high Arctic since 1997 (refs 7, 8). These studies have established that clouds, via the dominance of longwave radiation, exert a net warming on the Arctic climate system throughout most of the year, except briefly during the summer(9). The Arctic region also experiences significant periodic influxes of anthropogenic aerosols, which originate from the industrial regions in lower latitudes(10). Here we use multisensor radiometric data(7,8) to show that enhanced aerosol concentrations alter the microphysical properties of Arctic clouds, in a process known as the 'first indirect' effect(11,12). Under frequently occurring cloud types we find that this leads to an increase of an average 3.4 watts per square metre in the surface longwave fluxes. This is comparable to a warming effect from established greenhouse gases and implies that the observed longwave enhancement is climatologically significant.

Wilson, A, Scott RC, Cadeddu MP, Ghate V, Lubin D.  2018.  Cloud optical properties over West Antarctica from shortwave spectroradiometer measurements during AWARE. Journal of Geophysical Research-Atmospheres. 123:9559-9570.   10.1029/2018jd028347   AbstractWebsite

A shortwave spectroradiometer was deployed on the West Antarctic Ice Sheet (WAIS) as part of the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program ARM West Antarctic Radiation Experiment (AWARE). This instrument recorded 1-min averages of downwelling hemispheric spectral irradiance covering the wavelength range 350-2,200nm with spectral resolution 3 and 10nm for wavelengths shorter and longer than 1,000nm, respectively. Using simultaneous micropulse lidar data to identify the thermodynamic phase of stratiform clouds, a radiative transfer algorithm is used to retrieve optical depth and effective droplet (or particle) size for single-phase liquid water and ice water clouds. The AWARE campaign on the WAIS first sampled typical climatological conditions between 7 December 2015 and 9 January 2016 and then a much warmer air mass with more moisture associated with a surface melt event between 10 and 17 January 2016. Before the melt event most liquid cloud effective droplet radii were consistent with pristine polar maritime clouds (mode radius 13.5m) but showed a second local maximum in the distribution (at 8m) consistent with colder, moisture-limited conditions. Most ice clouds sampled occurred before the melt event (mode optical depth 4 and effective particle size 19m). During the melt event liquid water cloud optical depth nearly doubled (mode value increasing from 8 to 14). AWARE therefore sampled on the WAIS two cases relevant to climate model simulations: typical current climatological conditions, followed by warmer meteorology possibly consistent with future increasing surface melt scenarios.

Mulmenstadt, J, Lubin D, Russell LM, Vogelmann AM.  2012.  Cloud properties over the North Slope of Alaska: Identifying the prevailing meteorological regimes. Journal of Climate. 25:8238-8258.   10.1175/jcli-d-11-00636.1   AbstractWebsite

Long time series of Arctic atmospheric measurements are assembled into meteorological categories that can serve as test cases for climate model evaluation. The meteorological categories are established by applying an objective k-means clustering algorithm to 11 years of standard surface-meteorological observations collected from 1 January 2000 to 31 December 2010 at the North Slope of Alaska (NSA) site of the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM). Four meteorological categories emerge. These meteorological categories constitute the first classification by meteorological regime of a long time series of Arctic meteorological conditions. The synoptic-scale patterns associated with each category, which include well-known synoptic features such as the Aleutian low and Beaufort Sea high, are used to explain the conditions at the NSA site. Cloud properties, which are not used as inputs to the k-means clustering, are found to differ significantly between the regimes and are also well explained by the synoptic-scale influences in each regime. Since the data available at the ARM NSA site include a wealth of cloud observations, this classification is well suited for model observation comparison studies. Each category comprises an ensemble of test cases covering a representative range in variables describing atmospheric structure, moisture content, and cloud properties. This classification is offered as a complement to standard case-study evaluation of climate model parameterizations, in which models are compared against limited realizations of the Earth atmosphere system (e.g., from detailed aircraft measurements).

Lubin, D, Harper DA.  1996.  Cloud radiative properties over the South Pole from AVHRR infrared data. Journal of Climate. 9:3405-3418.   10.1175/1520-0442(1996)009<3405:crpots>2.0.co;2   AbstractWebsite

Over the Antarctic plateau, the radiances measured by the AVHRR middle infrared (11 and 12 mu m) channels are shown to depend on effective cloud temperature, emissivity, ice water path, and effective radius of the particle size distribution. The usefulness of these dependencies is limited by radiometric uncertainties of up to 2 K in brightness temperature and by the fact that the radiative transfer solutions are not single valued over all possible ranges of temperature, effective radius, and ice water path. Despite these limitations, AVHRR imagery can be used to characterize cloud optical properties over the Antarctic continent if surface weather observations and/or radiosonde data can be collocated with the satellite overpasses. From AVHRR imagery covering the South Pole during 1992, the mean cloud emissivity is estimated at 0.43 during summer and 0.37 during winter, while the mean summer and winter effective radii are estimated at 12.3 and 5.6 mu m, respectively. When a radiative transfer model is used to evaluate these results in comparison with surface pyrgeometer measurements, the comparison suggests that the AVHRR retrieval method captures the overall seasonal behavior in cloud properties. During months when the polar vortex persists, AVHRR infrared radiances may be noticeably influenced by polar stratospheric clouds.

Ricchiazzi, P, Gautier C, Lubin D.  1995.  Cloud Scattering Optical Depth and Local Surface Albedo in the Antarctic - Simultaneous Retrieval Using Ground-Based Radiometry. Journal of Geophysical Research-Atmospheres. 100:21091-21104.   10.1029/95jd01461   AbstractWebsite

We have used solar irradiance measurements from a ground-based multichannel radiometer system deployed at Palmer Station, Antarctica (64 degrees 46'S, 64 degrees 04'W), during spring 1991 to simultaneously estimate cloud scattering optical depth and surface albedo. Irradiance measurements at 410 and 630 nm, in conjunction with a discrete ordinate radiative transfer (RT) model, enable this simultaneous retrieval by exploiting the wavelength dependence in Rayleigh scattering strength. The RT model is used in an inverse mode to find the values of surface albedo and cloud optical depth that match calculated and measured irradiances at both wavelengths. Under the homogeneous stratiform cloud cover for which the technique applies, surface albedo at 630 nm was consistently retrieved at above 0.9. For most homogeneous, overcast conditions, cloud optical depth (at 630 nm) is found to be in the range 20-50, with a most probable value of 25. This measurement and retrieval technique should be useful for compiling high-latitude cloud opacity and surface albedo climatologies of interest for global change and photobiology research.

Lubin, D, Frederick JE.  1990.  Column Ozone Measurements from Palmer-Station, Antarctica - Variations During the Austral Springs of 1988 and 1989. Journal of Geophysical Research-Atmospheres. 95:13883-13889.   10.1029/JD095iD09p13883   AbstractWebsite

The National Science Foundation scanning spectroradiometer at Palmer Station, Antarctica (64°46′S, 64°04′W), provides hourly ground-based measurements of solar ultraviolet (UV) irradiance. In addition to defining the UV radiation environment of the region, these measurements allow the derivation of the column density of atmospheric ozone above the station nearly every daylight hour. This hourly time resolution, not generally available from other methods of monitoring Antarctic ozone abundances, enables the detection of large and rapid changes in total column ozone and UV surface irradiance associated with the dynamics of the polar vortex. Column ozone abundance is derived from a ratio of measured irradiances at 300 and 313.5 nanometers (nm) by means of theoretical calculation of this ratio as a function of total ozone amount. Noontime ozone abundances over Palmer Station obtained from this method agree with those obtained by the Total Ozone Mapping Spectrometer (TOMS) instrument aboard Nimbus 7 to within about 10% throughout the austral spring of 1988. Ozone recovery at Palmer Station, associated with the breakup of the polar vortex as indicated by TOMS satellite ozone observations, occurred rapidly within a 24-hour period beginning in midafternoon on November 15. Over the Antarctic Peninsula, the 1989 ozone depletion was slightly greater than in 1988, the minimum noontime ozone abundances over Palmer Station as measured by the spectroradiometer being 194 and 166 Dobson units for October 14, 1988, and October 14, 1989, respectively. The 1989 ozone depletion however ended by November 5 over the Antarctic Peninsula, 10 days earlier than the 1988 event.

Lubin, D, Mitchell BG, Frederick JE, Alberts AD, Booth CR, Lucas T, Neuschuler D.  1992.  A Contribution toward Understanding the Biospherical Significance of Antarctic Ozone Depletion. Journal of Geophysical Research-Atmospheres. 97:7817-7828.   10.1029/91JD01400   AbstractWebsite

Measurements of biologically active UV radiation made by the National Science Foundation (NSF) scanning spectroradiometer (UV-monitor) at Palmer Station. Antarctica, during the Austral springs of 1988, 1989, and 1990 are presented and compared. Column ozone abundance above Palmer Station is computed from these measurements using a multiple wavelength algorithm. Two contrasting action spectra (biological weighting functions) are used to estimate the biologically relevant (dose from the spectral measurements: a standard weighting function for damage to DNA, and a new action spectrum representing the potential for photosynthesis inhibition in Antarctic phytoplankton. The former weights only UV-B wavelengths (280-320 nm) and gives the most weight to wavelengths shorter than 300 nm, while the latter includes large contributions out to 355 nm. The latter is the result of recent Antarctic field work and is relevant in that phytoplankton constitute the base of the Antarctic food web. The modest ozone hole of 1988, in which the ozone abundance above Palmer Station never fell below 200 Dobson units (DU), brought about summerlike doses of DNA-effective UV radiation 2 months early, but UV doses which could inhibit photosynthesis in phytoplankton did not exceed a clear-sky "maximum normal" dose for that time of year. The severe ozone holes of 1989 and 1990, in which the ozone abundance regularly fell below 200 DU, brought about increases in UV surface irradiance weighted by either action spectrum. Ozone abundances and dose-weighted irradiances provided by the NSF UV-monitor are used to derive the radiation amplification factors (RAFs) for both DNA-effective irradiance and phytoplankton-effective irradiance. The RAF for DNA-effective irradiance is nonlinear in ozone abundance and is in excess of the popular "two for one" rule, while the RAF for phytoplankton-effective irradiance approximately follows a "one for one" rule.

Xiong, XZ, Lubin D, Li W, Stamnes K.  2002.  A critical examination of satellite cloud retrieval from AVHRR in the Arctic using SHEBA data. Journal of Applied Meteorology. 41:1195-1209.   10.1175/1520-0450(2002)041<1195:aceosc>2.0.co;2   AbstractWebsite

This study examines the validity and limitations associated with retrieval of cloud optical depth tau and effective droplet size r(e) in the Arctic from Advanced Very High Resolution Radiometer ( AVHRR) channels 2 (0.725-1.10 mum), 3 (3.55-3.93 mum), and 4 (10.3-11.3 mum). The error in r(e) is found to be normally less than 10%, but the uncertainty in tau can be more than 50% for a 10% uncertainty in the satellite- measured radiance. Model simulations show that the satellite- retrieved cloud optical depth tau(sat) is overestimated by up to 20% if the vertical cloud inhomogeneity is ignored and is underestimated by more than 50% if overlap of cirrus and liquid water clouds is ignored. Under partially cloudy conditions, tau(sat) is larger than that derived from surface-measured downward solar irradiance (tau(surf)) by 40%-130%, depending on cloud-cover fraction. Here, tau(sat) derived from NOAA-14 AVHRR data agrees well with tau(surf) derived from surface measurements of solar irradiance at the Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp in summer, but tau(sat) is about 2.3 times tau(surf) before the onset of snowmelt. This overestimate of tau(sat) is mainly due to the high reflectivity in AVHRR channel 2 over snow/ ice surfaces, the presence of partial cloud cover, and inaccurate representation of the scattering phase function for mixed-phase clouds.