Export 3 results:
Sort by: Author [ Title  (Asc)] Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Tytler, D, O'Meara JM, Suzuki N, Lubin D.  2000.  Big bang nucleosynthesis. Nuclear Physics B-Proceedings Supplements. 87:464-473.   10.1016/s0920-5632(00)00721-0   AbstractWebsite

Big Bang Nucleosynthesis (BBN) is the synthesis of the light nuclei, Deuterium (D or H-2), He-3, He-4 and Li-7 during the first few minutes of the universe. This review concentrates on recent improvements in the measurement of the primordial (after BBN, and prior to modification) abundances of these nuclei.

Podgorny, I, Lubin D.  1998.  Biologically active insolation over Antarctic waters: Effect of a highly reflecting coastline. Journal of Geophysical Research-Oceans. 103:2919-2928.   10.1029/97jc02763   AbstractWebsite

Near an Antarctic coastline or sea ice edge, multiple reflection of photons between the high-albedo surface and a cloud will increase the downwelling surface insolation not only over the high-albedo surface itself but also out over the adjacent open water. This insolation enhancement is examined with a Monte Carlo radiative transfer model. The insolation enhancement extends to a typical distance of 4 km out to sea, with the most important effects being within 2 km of the coastline. The strength of the multiple reflection effect depends primarily on cloud base height and cloud optical depth and only slightly on cloud geometrical thickness. The insolation enhancement is also a function of wavelength, being larger for ultraviolet wavelengths than for the visible. This is due to a slightly greater contribution from Rayleigh scattering at the shorter wavelengths, although at ultraviolet wavelengths where ozone absorption is strong, tropospheric ozone absorption can offset the Rayleigh scattering contribution at larger cloud optical depths. On the basis of the limited range of the multiple reflection effect (2-4 km out to sea) the insolation enhancement due to the high-albedo coastline is unlikely to be a major influence on the primary productivity of all Antarctic waters; however, it may influence phytoplankton blooms near the coast and photobiological experiments carried out at coastal research stations. Also, the insolation enhancement may have significance in sea ice leads and polynyas.

Frederick, JE, Lubin D.  1988.  The Budget of Biologically-Active Ultraviolet-Radiation in the Earth-Atmosphere System. Journal of Geophysical Research-Atmospheres. 93:3825-3832.   10.1029/JD093iD04p03825   AbstractWebsite

This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the Earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 320 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective path length of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.