Publications

Export 5 results:
Sort by: Author [ Title  (Asc)] Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Lubin, D, Wittenmyer RA, Bromwich DH, Marshall GJ.  2008.  Antarctic Peninsula mesoscale cyclone variability and climatic impacts influenced by the SAM. Geophysical Research Letters. 35   10.1029/2007gl032170   AbstractWebsite

The frequency of mesoscale cyclones in the Western Antarctic Peninsula (WAP) region during 1991-94 is correlated with the Southern Hemisphere Annular Mode (SAM) index, most strongly during winter and spring. Also, during periods of positive SAM index polarity there is a shift in the storm tracks to favor more east-bound trajectories, consistent with strengthening of circumpolar westerlies. The presence of mesoscale cyclones is associated with positive near-surface-air temperature anomalies in the WAP region year-round, largest during winter.

Smith, WL, Hansen C, Bucholtz A, Anderson BE, Beckley M, Corbett JG, Cullather RI, Hines KM, Hofton M, Kato S, Lubin D, Moore RH, Rosenhaimer MS, Redemann J, Schmidt S, Scott R, Song S, Barrick JD, Blair JB, Bromwich DH, Brooks C, Chen G, Cornejo H, Corr CA, Ham SH, Kittelman AS, Knappmiller S, LeBlanc S, Loeb NG, Miller C, Nguyen L, Palikonda R, Rabine D, Reid EA, Richter-Menge JA, Pilewswskie P, Shinozuka Y, Spangenberg D, Stackhouse P, Taylor P, Thornhill KL, Van Gilst D, Winstead E.  2017.  ARCTIC RADIATION-ICEBRIDGE SEA AND ICE EXPERIMENT The Arctic Radiant Energy System during the Critical Seasonal Ice Transition. Bulletin of the American Meteorological Society. 98:1399-1426.   10.1175/bams-d-14-00277.1   AbstractWebsite

Through ARISE, NASA acquired unique aircraft data on clouds, atmospheric radiation and sea ice properties during the critical period between the sea ice minimum in late summer and autumn and the commencement of refreezing.

McComiskey, A, Ricchiazzi P, Gautier C, Lubin D.  2006.  Assessment of a three dimensional model for atmospheric radiative transfer over heterogeneous land cover. Geophysical Research Letters. 33   10.1029/2005gl025356   AbstractWebsite

A three-dimensional (3D) atmospheric radiative transfer model that explicitly represents surface albedo heterogeneity is tested against a one-dimensional model and surface irradiance observations in a polar region where land cover heterogeneity is high. For observations located near high latitude coastlines, the contrast between the highly absorbing ocean and reflective snow surface creates spatial heterogeneity, or a 3D effect, around the observation site. The resulting effect on radiation at the sensor should be taken into account when using a solar radiative transfer model to interpret measurements. This assessment shows that better closure is obtained with a three-dimensional model (<= 5%) versus a plane-parallel model (<= 7%). The importance of the surface 3D effect increases with aerosol or cloud optical depth and with surface albedo contrast. The model used here can be implemented at any surface site given the surrounding land cover properties.

Kahn, BH, Irion FW, Dang VT, Manning EM, Nasiri SL, Naud CM, Blaisdell JM, Schreier MM, Yue Q, Bowman KW, Fetzer EJ, Hulley GC, Liou KN, Lubin D, Ou SC, Susskind J, Takano Y, Tian B, Worden JR.  2014.  The Atmospheric Infrared Sounder version 6 cloud products. Atmospheric Chemistry and Physics. 14:399-426.   10.5194/acp-14-399-2014   AbstractWebsite

The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter (D-e), and ice cloud optical thickness (tau) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D-e is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D-e, and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

Lubin, D, Holm-Hansen O.  1995.  Atmospheric ozone and the biological impact of solar ultraviolet radiation. Encyclopedia of environmental biology. Vol. 1, A-E. 1( Nierenberg WA, Ed.).:147-168.: Academic Press Abstract
n/a