Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Wilson, A, Scott RC, Cadeddu MP, Ghate V, Lubin D.  2018.  Cloud optical properties over West Antarctica from shortwave spectroradiometer measurements during AWARE. Journal of Geophysical Research-Atmospheres. 123:9559-9570.   10.1029/2018jd028347   AbstractWebsite

A shortwave spectroradiometer was deployed on the West Antarctic Ice Sheet (WAIS) as part of the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program ARM West Antarctic Radiation Experiment (AWARE). This instrument recorded 1-min averages of downwelling hemispheric spectral irradiance covering the wavelength range 350-2,200nm with spectral resolution 3 and 10nm for wavelengths shorter and longer than 1,000nm, respectively. Using simultaneous micropulse lidar data to identify the thermodynamic phase of stratiform clouds, a radiative transfer algorithm is used to retrieve optical depth and effective droplet (or particle) size for single-phase liquid water and ice water clouds. The AWARE campaign on the WAIS first sampled typical climatological conditions between 7 December 2015 and 9 January 2016 and then a much warmer air mass with more moisture associated with a surface melt event between 10 and 17 January 2016. Before the melt event most liquid cloud effective droplet radii were consistent with pristine polar maritime clouds (mode radius 13.5m) but showed a second local maximum in the distribution (at 8m) consistent with colder, moisture-limited conditions. Most ice clouds sampled occurred before the melt event (mode optical depth 4 and effective particle size 19m). During the melt event liquid water cloud optical depth nearly doubled (mode value increasing from 8 to 14). AWARE therefore sampled on the WAIS two cases relevant to climate model simulations: typical current climatological conditions, followed by warmer meteorology possibly consistent with future increasing surface melt scenarios.

Smith, WL, Hansen C, Bucholtz A, Anderson BE, Beckley M, Corbett JG, Cullather RI, Hines KM, Hofton M, Kato S, Lubin D, Moore RH, Rosenhaimer MS, Redemann J, Schmidt S, Scott R, Song S, Barrick JD, Blair JB, Bromwich DH, Brooks C, Chen G, Cornejo H, Corr CA, Ham SH, Kittelman AS, Knappmiller S, LeBlanc S, Loeb NG, Miller C, Nguyen L, Palikonda R, Rabine D, Reid EA, Richter-Menge JA, Pilewswskie P, Shinozuka Y, Spangenberg D, Stackhouse P, Taylor P, Thornhill KL, Van Gilst D, Winstead E.  2017.  ARCTIC RADIATION-ICEBRIDGE SEA AND ICE EXPERIMENT The Arctic Radiant Energy System during the Critical Seasonal Ice Transition. Bulletin of the American Meteorological Society. 98:1399-1426.   10.1175/bams-d-14-00277.1   AbstractWebsite

Through ARISE, NASA acquired unique aircraft data on clouds, atmospheric radiation and sea ice properties during the critical period between the sea ice minimum in late summer and autumn and the commencement of refreezing.