Publications

Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
2004
Xiong, XZ, Storvold R, Stamnes K, Lubin D.  2004.  Derivation of a threshold function for the Advanced Very High Resolution Radiometer 3.75 mu m channel and its application in automatic cloud discrimination over snow/ice surfaces. International Journal of Remote Sensing. 25:2995-3017.   10.1080/01431160310001619553   AbstractWebsite

The distinct contrast between the reflectance of solar radiation in Advanced Very High Resolution Radiometer (AVHRR) channel 3 (3.75 mum) by clouds and by bright surfaces provides an effective means of cloud discrimination over snow/ice surfaces. A threshold function for the top-of-atmosphere (TOA) albedo in channel 3 (r(3)) is derived and used to develop an improved method for cloud discrimination over snow/ice surfaces that makes explicit use of TOA r(3) . Corrections for radiance anisotropy and temperature effects are required to derive accurate values of r(3) from satellite measurements and to utilize the threshold function. It has been used to retrieve cloud cover fractions from National Oceanic and Atmospheric Administration (NOAA)-14 AVHRR data over the Arctic Ocean and over the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska. The retrieved cloud fractions are in good agreement with SHEBA (Surface HEat Budget of the Arctic Ocean) surface visual observations and with NSA cloud radar and lidar observations, respectively. This method can be utilized to improve cloud discrimination over snow/ice surfaces for any satellite sensor with a channel near 3.7 mum.

2003
Lubin, D, Lynch S, Clarke R, Morrow E, Hart S.  2003.  Increasing reflectivity of the Antarctic ocean-atmosphere system: Analysis of Total Ozone Mapping Spectrometer (TOMS) and passive microwave data for 1979-1994. Journal of Geophysical Research-Atmospheres. 108   10.1029/2002jd002702   AbstractWebsite

Measurements of Lambert equivalent reflectance at 380 nm from the Total Ozone Mapping Spectrometer (TOMS) instrument have shown increases in reflectivity between 1979 and 1994 over much of the Southern Ocean, encompassing 280degrees in longitude. These trends represent a possible change in the state of the Antarctic ocean-atmosphere system related to recent climate warming. To determine if these reflectivity trends are due to changes in cloud cover or sea ice, or both, the TOMS data were collocated with a contemporaneous passive microwave satellite data set from the scanning multichannel microwave radiometer and the Special Sensor Microwave Imager. The passive microwave data sets specify total sea ice concentration, retrieved by a uniform method for all years using the NASA Team algorithm. To first order the locations of TOMS reflectivity increases coincide with regions where sea ice concentration has increased over the past 2 decades, signifying that the TOMS trends are the result of trends in underlying sea ice and not cloud cover. However, when the TOMS reflectivity measurements are sorted into fixed sea ice concentration bins of 0.1 width, the TOMS data also show increasing reflectivity trends in regions where sea ice extent has been decreasing (Amundsen and Bellingshausen Seas and the Western Antarctic Peninsula). Over open water, TOMS reflectivity trends are less convincing and may be artifacts related to uncertainties in passive microwave sea ice identification. These results suggest that a significant component of the Southern Ocean TOMS reflectivity trends may be a gradual increase in the albedo of the underlying sea ice. This could be caused by a gradual lengthening of the sea ice season, with a concomitant increase in the persistence of dry snow on the sea ice cover.

2001
Lubin, D, Morrow E.  2001.  Ultraviolet radiation environment of Antarctica 1. Effect of sea ice on top-of-atmosphere albedo and on satellite retrievals. Journal of Geophysical Research-Atmospheres. 106:33453-33461.   10.1029/2001jd000687   AbstractWebsite

The backscattered ultraviolet radiance measured by the Total Ozone Mapping Spectrometer (TOMS) over the Southern Ocean is influenced by both cloud cover and sea ice concentration. In TOMS data alone, these influences cannot be separated. To assess the relative importance of cloud opacity and sea ice concentration, TOMS level 2 data are colocated with AVHRR and SSM/I data. AVHRR provides independent cloud identification at a spatial resolution sufficient to estimate cloud fraction within a TOMS level 2 footprint, while the SSM/I provides useful estimates of sea ice concentration over clear and cloudy scenes. The sea ice cover is shown to have a stronger influence than cloud cover on the backscattered ultraviolet radiance at the top of the atmosphere. Over overcast scenes the mean TOMS reflectivity increases from 45 to 84% as the underlying sea ice concentration increases from 0 to 1. Over scenes containing sea ice concentrations greater than 0.5, the increase in TOMS-measured radiance with increasing cloud amount (0-1) is generally less than 30% and is negligible over high sea ice concentrations. Over clear-sky scenes the characteristic UV-A albedos of the sea ice components of the scenes are retrieved from the TOMS data. These albedos range from 0.19 +/- 0.14 for sea ice concentration 0.1, increasing rapidly to 0.53 +/- 0.15 for sea ice concentration 0.3, and then approximately linearly to 0.80 +/- 0.11 for sea ice concentration 1.0. There is the potential to develop a climatology of surface ultraviolet and photosynthetically active radiation for southern high latitudes, which utilizes a combination of TOMS and SSM/I data. Such a climatology could cover the entire Southern Ocean throughout the duration of the modern springtime ozone depletion phenomenon. Analysis of uncertainties related to sea ice concentration retrieval from SSM/I, and related uncertainties in surface albedo identification and their influence on the estimated surface radiative flux, shows that such a climatology would have the most quantitative value for sea ice concentrations less than 0.5.

1997
Lubin, D, Garrity C, Ramseier RO, Whritner RH.  1997.  Total sea ice concentration retrieval from the SSM/I 85.5 GHz channels during the Arctic summer. Remote Sensing of Environment. 62:63-76.   10.1016/s0034-4257(97)00081-3   AbstractWebsite

During the 1994 Arctic Ocean Section, a joint voyage across the Arctic Ocean, by the U.S. Coast Guard Cutter Polar Sea and the Canadian Coast Guard Ship Louis S. St.-Laurent, telemetry from the Defense Meteorological Satellite Program (DMSP) polar orbiters was tracked by a shipboard antenna. Special Sensor Microwave Imager (SSM/I) data was used to generate maps of total sea. ice concentration, using the NASA Team algorithm with the 19 GHz and 37 GHz channels, and using a polarization-based algorithm with the 85.5 GHz channels. When compared with shipboard ice observations, the total sea ice concentration estimated from the 85.5 GHz algorithm are at least as accurate as those from the algorithm that uses only the lower SSM/I frequencies, despite the potential for greater difficulty in dealing with cloud liquid water contamination in the 85.5 GHz signal during the Arctic summer. Near the edge of the ice pack, the 85.5 GHz algorithm often provided more accurate estimates of total ice concentration when compared with surface observations, most likely because of the finer grid spacing at 85.5 GHz (12.5 km vs. 25 km for 37 GHz). However, when using the 85.5 GHz algorithm over regions of lower ice concentration, the reference polarizations in a given image must be chosen with care because over lower sea ice concentration the polarization-based algorithm is more sensitive to cloud opacity and can easily and substantially underestimate the ice concentration. The 85.5 GHz total sea ice retrievals are compared with in situ snow wetness measurements. This comparison suggests that, despite the higher atmospheric opacity at 85.5 GHz, information about sea ice surface properties that affect emissivity can be obtained from these SSM/I channels. (C) Elsevier Science Inc., 1997.

1996
Lubin, D, Harper DA.  1996.  Cloud radiative properties over the South Pole from AVHRR infrared data. Journal of Climate. 9:3405-3418.   10.1175/1520-0442(1996)009<3405:crpots>2.0.co;2   AbstractWebsite

Over the Antarctic plateau, the radiances measured by the AVHRR middle infrared (11 and 12 mu m) channels are shown to depend on effective cloud temperature, emissivity, ice water path, and effective radius of the particle size distribution. The usefulness of these dependencies is limited by radiometric uncertainties of up to 2 K in brightness temperature and by the fact that the radiative transfer solutions are not single valued over all possible ranges of temperature, effective radius, and ice water path. Despite these limitations, AVHRR imagery can be used to characterize cloud optical properties over the Antarctic continent if surface weather observations and/or radiosonde data can be collocated with the satellite overpasses. From AVHRR imagery covering the South Pole during 1992, the mean cloud emissivity is estimated at 0.43 during summer and 0.37 during winter, while the mean summer and winter effective radii are estimated at 12.3 and 5.6 mu m, respectively. When a radiative transfer model is used to evaluate these results in comparison with surface pyrgeometer measurements, the comparison suggests that the AVHRR retrieval method captures the overall seasonal behavior in cloud properties. During months when the polar vortex persists, AVHRR infrared radiances may be noticeably influenced by polar stratospheric clouds.