Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Berque, J, Lubin D, Somerville RCJ.  2011.  Transect method for Antarctic cloud property retrieval using AVHRR data. International Journal of Remote Sensing. 32:2887-2903.   10.1080/01431161003745624   AbstractWebsite

For studies of Antarctic climate change, the Advanced Very High Resolution Radiometer (AVHRR) offers a time series spanning more than two decades, with numerous overpasses per day from converging polar orbits, and with radiometrically calibrated thermal infrared channels. However, over the Antarctic Plateau, standard multispectral application of AVHRR data for cloud optical property retrieval with individual pixels is problematic due to poor scene contrasts and measurement uncertainties. We present a method that takes advantage of rapid changes in radiances at well-defined cloud boundaries. We examine a transect of AVHRR-measured radiances in the three thermal infrared channels across a boundary between cloudy and cloud-free parts of the image. Using scatter diagrams, made from the data along this transect, of the brightness temperature differences between channels 3 and 4, and channels 4 and 5, it is possible to fit families of radiative transfer solutions to the data to estimate cloud effective temperature, thermodynamic phase, and effective particle radius. The major approximation with this method is that along such a transect, cloud water path has considerable spatial variability, while effective radius, phase, and cloud temperature have much less variability. To illustrate this method, two AVHRR images centred about the South Pole are analysed. The two images are chosen based on their differing contrasts in brightness temperature between clear and cloud-filled pixels, to demonstrate that our method can work with varying cloud top heights. In one image the data are consistent with radiative transfer simulations using ice cloud. In the other, the data are inconsistent with ice cloud and are well simulated with supercooled liquid water cloud at 241.5 K. This method therefore has potential for climatological investigation of the radiatively important phase transition in the extremely cold and pristine Antarctic environment.

Lubin, D, Simpson AS.  1997.  Measurement of surface radiation fluxes and cloud optical properties during the 1994 Arctic Ocean Section. Journal of Geophysical Research-Atmospheres. 102:4275-4286.   10.1029/96jd03215   AbstractWebsite

During a voyage to the north pole from Alaska by the icebreakers USCGC Polar Sea and Canadian CGC Louis S. St.-Laurent (the 1994 Arctic Ocean Section, July 24 to September 3) an atmospheric radiation and remote sensing experiment measured downwelling shortwave and longwave radiation reaching the sea ice surface. The experiment included a Fourier transform infrared (FTIR) spectroradiometer which measured zenith radiance at 1 cm(-1) resolution in the middle infrared wavelength range 5-20 mu m, an Eppley pyranometer measuring most of the downwelling shortwave flux (0.28-2.80 mu m), an Eppley pyranometer measuring the downwelling near-infrared flux (0.78-2.80 mu m), and an Eppley pyrgeometer measuring the downwelling longwave flux. In conjunction with a discrete-ordinates radiative transfer model, the FTIR emission spectra are used to estimate 8-12 mu m cloud emissivity and effective radius of the cloud droplet size distribution. The broadband shortwave flux measurements are used to estimate shortwave cloud scattering optical depth. Most of the FTIR emission spectra recorded under overcast skies are consistent with cloud effective radius in the range 10-12 mu m, but 27% of the spectra are more consistent with the range 4-6 mu m, suggesting an occasional continental aerosol influence to Arctic cloud microphysics. The average daily shortwave cloud-scattering optical depth ranged from 2 to 46, which is similar to a range inferred from radiometer data recorded at Barrow, Alaska, during the same season. The downwelling shortwave flux measurements and estimates of net surface flux are generally consistent with a four-decade Russian climatology but also suggest that the frequency of cloud cover sampled during the 1994 Arctic Ocean Section was somewhat larger than the climatological average. These radiation measurement data from the 1994 Arctic Ocean Section should be useful for examining the treatment of atmospheric radiation and surface energy input in Arctic climate model simulations.

Lubin, D, Chen JP, Pilewskie P, Ramanathan V, Valero FPJ.  1996.  Microphysical examination of excess cloud absorption in the tropical atmosphere. Journal of Geophysical Research-Atmospheres. 101:16961-16972.   10.1029/96jd01154   AbstractWebsite

To investigate the excess shortwave absorption by clouds, a numerical cloud generation model has been coupled to a plane-parallel discrete ordinates radiative transfer model. The former was used in a time-dependent fashion to generate a cumulonimbus turret and three types of cirrus anvil (precipitating, extended, detached) representing three stages of cloud evolution outward from the turret. The cloud particle size distributions, as a function of altitude, were used as input to the radiative transfer model using indices of refraction for pure water and pure ice and equivalent sphere Mie theory. The radiative transfer model was used to calculate the ratio of cloud forcing at the surface to cloud forcing at the top of the atmosphere, both for the broadband shortwave and as a function of wavelength. Recent empirical studies have placed this cloud forcing ratio at around 1.5, and our coupled model results approach this value for small solar zenith angles, when the cloud contains large (>100 mu m) ice particles that absorb significantly in the near infrared (primarily the 1.6-mu m window). However, the empirical studies are based on diurnal averages, and our plane-parallel radiative transfer model yields an area and diurnally averaged cloud forcing ratio of only 1.18 for a tropical cumulonimbus and cirrus anvil system, primarily because of the rapid decrease of the ratio with solar zenith angle. The ratio decreases because of the increase in albedo with solar zenith angle, which is a characteristic feature of plane-parallel clouds. Adding dust or aerosol to the cloud layers, to make them absorb at visible wavelengths, makes the instantaneous cloud forcing ratio larger for an overhead Sun but also makes the solar zenith angle dependence in the cloud forcing ratio more pronounced. These two effects cancel, eliminating interstitial aerosol as a possible explanation for the excess cloud absorption in plane-parallel radiative transfer modeling. The strong dependence of the surface/top of the atmosphere cloud forcing ratio on solar zenith angle may be a fundamental defect with the plane-parallel approach to solar radiative transfer in a cloudy atmosphere.

Lubin, D, Harper DA.  1996.  Cloud radiative properties over the South Pole from AVHRR infrared data. Journal of Climate. 9:3405-3418.   10.1175/1520-0442(1996)009<3405:crpots>;2   AbstractWebsite

Over the Antarctic plateau, the radiances measured by the AVHRR middle infrared (11 and 12 mu m) channels are shown to depend on effective cloud temperature, emissivity, ice water path, and effective radius of the particle size distribution. The usefulness of these dependencies is limited by radiometric uncertainties of up to 2 K in brightness temperature and by the fact that the radiative transfer solutions are not single valued over all possible ranges of temperature, effective radius, and ice water path. Despite these limitations, AVHRR imagery can be used to characterize cloud optical properties over the Antarctic continent if surface weather observations and/or radiosonde data can be collocated with the satellite overpasses. From AVHRR imagery covering the South Pole during 1992, the mean cloud emissivity is estimated at 0.43 during summer and 0.37 during winter, while the mean summer and winter effective radii are estimated at 12.3 and 5.6 mu m, respectively. When a radiative transfer model is used to evaluate these results in comparison with surface pyrgeometer measurements, the comparison suggests that the AVHRR retrieval method captures the overall seasonal behavior in cloud properties. During months when the polar vortex persists, AVHRR infrared radiances may be noticeably influenced by polar stratospheric clouds.