Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2003
Satheesh, SK, Lubin D.  2003.  Short wave versus long wave radiative forcing by Indian Ocean aerosols: Role of sea-surface winds. Geophysical Research Letters. 30   10.1029/2003gl017499   AbstractWebsite

[1] Recent observations over the Indian Ocean have demonstrated aerosol short wave absorption as high as 20 to 25 W m(-2). The aerosol net radiative forcing reduces substantially while considering the broad spectrum including the long wave region (due to large infrared forcing which is opposite in sign). At highwinds, presence of large amounts of sea-salt aerosols (absorbing in infrared) enhances the infrared forcing; hence reduces the net radiative forcing. In this paper, we examine the role of sea-surface winds (which enhance sea-salt aerosols) on long wave aerosol forcing. Even at moderate winds (6-10 m s(-1)), the short wave forcing reduces by similar to45% due to the dominance of sea-salt aerosols. At high winds (>10 m s(-1)), a major fraction of the long wave forcing is contributed by sea-salt (more than 70%). Our studies show that neglecting aerosol long wave radiative forcing can cause large errors in climate models.

2001
Ramanathan, V, Crutzen PJ, Lelieveld J, Mitra AP, Althausen D, Anderson J, Andreae MO, Cantrell W, Cass GR, Chung CE, Clarke AD, Coakley JA, Collins WD, Conant WC, Dulac F, Heintzenberg J, Heymsfield AJ, Holben B, Howell S, Hudson J, Jayaraman A, Kiehl JT, Krishnamurti TN, Lubin D, McFarquhar G, Novakov T, Ogren JA, Podgorny IA, Prather K, Priestley K, Prospero JM, Quinn PK, Rajeev K, Rasch P, Rupert S, Sadourny R, Satheesh SK, Shaw GE, Sheridan P, Valero FPJ.  2001.  Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. Journal of Geophysical Research-Atmospheres. 106:28371-28398.   10.1029/2001jd900133   AbstractWebsite

Every year, from December to April, anthropogenic haze spreads over most of the North Indian Ocean, and South and Southeast Asia. The Indian Ocean Experiment (INDOEX) documented this Indo-Asian haze at scales ranging from individual particles to its contribution to the regional climate forcing. This study integrates the multiplatform. observations (satellites, aircraft, ships, surface stations, and balloons) with one- and four-dimensional models to derive the regional aerosol forcing resulting from the direct, the semidirect and the two indirect effects. The haze particles consisted of several inorganic and carbonaceous species, including absorbing black carbon clusters, fly ash, and mineral dust. The most striking result was the large loading of aerosols over most of the South Asian region and the North Indian Ocean. The January to March 1999 visible optical depths were about 0.5 over most of the continent and reached values as large as 0.2 over the equatorial Indian ocean due to long-range transport. The aerosol layer extended as high as 3 km. Black carbon contributed about 14% to the fine particle mass and 11% to the visible optical depth. The single-scattering albedo estimated by several independent methods was consistently around 0.9 both inland and over the open ocean. Anthropogenic sources contributed as much as 80% (+/- 10%) to the aerosol loading and the optical depth. The in situ data, which clearly support the existence of the first indirect effect (increased aerosol concentration producing more cloud drops with smaller effective radii), are used to develop a composite indirect effect scheme. The Indo-Asian aerosols impact the radiative forcing through a complex set of heating (positive forcing) and cooling (negative forcing) processes. Clouds and black carbon emerge as the ma or players. The dominant factor, however, is the large negative forcing (-20 +/- 4 W m(-2)) at the surface and the comparably large atmospheric heating. Regionally, the absorbing haze decreased the surface solar radiation by an amount comparable to 50% of the total ocean heat flux and nearly doubled the lower tropospheric solar heating. We demonstrate with a general circulation model how this additional heating significantly perturbs the tropical rainfall patterns and the hydrological cycle with implications to global climate.