Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2012
Bromwich, DH, Nicolas JP, Hines KM, Kay JE, Key EL, Lazzara MA, Lubin D, McFarquhar GM, Gorodetskaya IV, Grosvenor DP, Lachlan-Cope T, van Lipzig NPM.  2012.  Tropospheric clouds in Antarctica. Reviews of Geophysics. 50   10.1029/2011rg000363   AbstractWebsite

Compared to other regions, little is known about clouds in Antarctica. This arises in part from the challenging deployment of instrumentation in this remote and harsh environment and from the limitations of traditional satellite passive remote sensing over the polar regions. Yet clouds have a critical influence on the ice sheet's radiation budget and its surface mass balance. The extremely low temperatures, absolute humidity levels, and aerosol concentrations found in Antarctica create unique conditions for cloud formation that greatly differ from those encountered in other regions, including the Arctic. During the first decade of the 21st century, new results from field studies, the advent of cloud observations from spaceborne active sensors, and improvements in cloud parameterizations in numerical models have contributed to significant advances in our understanding of Antarctic clouds. This review covers four main topics: (1) observational methods and instruments, (2) the seasonal and interannual variability of cloud amounts, (3) the microphysical properties of clouds and aerosols, and (4) cloud representation in global and regional numerical models. Aside from a synthesis of the existing literature, novel insights are also presented. A new climatology of clouds over Antarctica and the Southern Ocean is derived from combined measurements of the CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellites. This climatology is used to assess the forecast cloud amounts in 20th century global climate model simulations. While cloud monitoring over Antarctica from space has proved essential to the recent advances, the review concludes by emphasizing the need for additional in situ measurements.

2004
Lubin, D.  2004.  Thermodynamic phase of maritime Antarctic clouds from FTIR and supplementary radiometric data. Journal of Geophysical Research-Atmospheres. 109   10.1029/2003jd003979   AbstractWebsite

A Fourier Transform Infrared (FTIR) spectroradiometer was deployed at Palmer Station, Antarctica, from 1 September to 17 November 1991. This instrument is similar to the Atmospheric Emitted Radiance Interferometer (AERI) deployed with the U. S. Department of Energy Atmospheric Radiation Measurement (ARM) program. The instrument measured downwelling zenith radiance in the spectral interval 400 2000 cm(-1), at a resolution of 1 cm(-1). The spectral radiance measurements, which can be expressed as spectral brightness temperature T-b(nu), contain information about cloud optical properties in the middle infrared window (800-1200 cm(-1) 1, 8.3-12.5 mm). In this study, this information is exploited to (1) provide additional characterization of Antarctic cloud radiative properties, and (2) demonstrate how multisensor analysis of ARM data can potentially retrieve cloud thermodynamic phase. Radiative transfer simulations demonstrate how T-b(nu) is a function of cloud optical depth tau, effective particle radius r(e), and thermodynamic phase. For typical values of tau and r(e), the effect of increasing the ice fraction of the total optical depth is to flatten the slope of T-b(nu) between 800 1000 cm(-1). For optically thin clouds (tau similar to 3) and larger ice particles (re(ice) > 50 mm) the behavior of T-b(nu) in this interval switches from a decrease with increasing wavenumber n to an increase with nu, once the ice fraction of the total optical depth exceeds similar to0.7. The FTIR spectra alone cannot be interpreted to obtain thermodynamic phase, because a relatively small slope in T-b(nu) between 800-1000 cm(-1) could represent either an optically thin cloud in the ice or mixed phase, or an optically thick cloud radiating as a blackbody. Sky observations and ancillary radiometric data are needed to sort the FTIR spectra into categories of small cloud optical depth, where the mid-IR window data can be interpreted; and larger cloud optical depth, where the FTIR data contain information only about cloud base temperature. Spectral solar ultraviolet (UV) irradiance measurements from the U. S. National Science Foundation's UV Monitor at Palmer Station are used to estimate area-averaged effective cloud optical depth tau(sw), and these estimates are used to sort the FTIR data. FTIR measurements with colocated tau(sw) < 16 are interpreted to estimate cloud thermodynamic phase. Precipitating cloud decks generally show flatter slopes in T-b(ν), consistent with the ice or mixed phase. Altostratus decks show a larger range in T-b(ν) slope than low cloud decks, including increasing slopes with ν, suggesting a more likely occurrence of the ice phase. This study illustrates how cloud thermodynamic phase can be defensibly retrieved from FTIR data if high quality shortwave radiometric data are also available to sort the FTIR measurements by cloud opacity, and both data types are available at the ARM sites.

1998
Lubin, D, Jensen EH, Gies HP.  1998.  Global surface ultraviolet radiation climatology from TOMS and ERBE data. Journal of Geophysical Research-Atmospheres. 103:26061-26091.   10.1029/98jd02308   AbstractWebsite

A global climatology of biologically active solar ultraviolet radiation (UVR) at the Earth's surface is derived using NASA total ozone mapping spectrometer (TOMS) measurements of column ozone abundance and NASA Earth Radiation Budget Experiment (ERBE) measurements of solar reflectance from the Earth-atmosphere system. These two sources of satellite data are used as input to a delta-Eddington radiative transfer model to estimate climatological cloud opacity and thereby demonstrate how surface UVR varies with geography and season. The surface UVR fluxes are spectrally resolved to enable weighted integration with any biological action spectrum. Solar elevation is shown to be more important than total column ozone abundance in governing the variability of surface UVR over large geographic areas, although some regions with pronounced local minima in ozone (30 Dobson units or more) will cause noticeable enhancements of integrated UV-B (280-315 nm) flux relative to UV-A (315-400 nm). The greatest variability in surface UVR within a given climate zone is induced by cloud cover. During summer, regions that show lower surface UVR fluxes relative to their surrounding regions include the eastern United States (versus the western United States), India, China (in the vicinity of the Yangtze River), and Japan (relative to the surrounding oceans). Cloud cover over tropical rainforest areas reduces the surface UVR flux relative to ocean areas at the same latitudes. The UVR cloud transmission derived from the TOMS and ERBE data correlates with an independent climatology of global cloud coverage. The UVR mapping method, based on the TOMS and ERBE data, allows a direct investigation of diurnal variability and a rigorous calculation of the biologically relevant integrated daily dose of UVR. However, it is shown that a UVR mapping method based on TOMS data alone, which is limited to only local noon satellite measurements, can make defensible estimates of the integrated daily UVR dose and the instantaneous local noon UVR surface flux.

Jayaraman, A, Lubin D, Ramachandran S, Ramanathan V, Woodbridge E, Collins WD, Zalpuri KS.  1998.  Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January-February 1996 pre-INDOEX cruise. Journal of Geophysical Research-Atmospheres. 103:13827-13836.   10.1029/98jd00559   AbstractWebsite

Simultaneous measurements of aerosol optical depth, size distribution, and incoming solar radiation flux were conducted with spectral and broadband radiometers over the coastal Indian region, Arabian Sea, and Indian Ocean in January-February 1996. Columnar aerosol optical depth, delta a, at visible wavelengths was found to be 0.2-0.5 over the Arabian Sea and <0.1 over the equatorial Indian Ocean. Aerosol mass concentration decreased from about 80 mu g/m(3) near the coast to just a few mu g/m(3) over the interior ocean. The sub-micron-size particles showed more than an order of magnitude increase in number concentration near the coast versus the interior ocean. This large gradient in particle concentration was consistent with a corresponding large increase in the Sun-photometer-derived Angstrom exponent, which increased from 0.2 over the Indian Ocean to about 1.4 near the coast. The change in surface-reaching solar flux with delta a was obtained for both the direct and the global solar flux in the visible spectral region. The solar-zenith-angle-normalized global and diffuse fluxes vary almost linearly with normalized delta a. The direct visible (<780 nm) solar flux decreases by about 42 +/- 4 Wm(-2) and the diffuse sky radiation increases by about 30 +/- 3 Wm(-2) with every 0.1 increase in delta a, for solar zenith angles smaller than 60 degrees. For the same extinction optical depth the radiative forcing of the coastal aerosols is larger than the open ocean aerosol forcing by a factor of 2 or larger.