Publications

Export 46 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Andersson, AJ, Kline DI, Edmunds PJ, Archer SD, Bednaršek N, Carpenter RC, Chadsey M, Goldstein P, Grottoli AG, Hurst TP.  2015.  Understanding ocean acidification impacts on organismal to ecological scales. Oceanography. 28(2):16-27. Abstract
n/a
Anthony, KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O.  2008.  Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences. 105:17442-17446.   10.1073/pnas.0804478105   AbstractWebsite

Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of framework builders. In addition, acidification is likely to affect the relationship between corals and their symbiotic dinoflagellates and the productivity of this association. However, little is known about how acidification impacts on the physiology of reef builders and how acidification interacts with warming. Here, we report on an 8-week study that compared bleaching, productivity, and calcification responses of crustose coralline algae (CCA) and branching (Acropora) and massive (Porites) coral species in response to acidification and warming. Using a 30-tank experimental system, we manipulated CO2 levels to simulate doubling and three- to fourfold increases [Intergovernmental Panel on Climate Change (IPCC) projection categories IV and VI] relative to present-day levels under cool and warm scenarios. Results indicated that high CO2 is a bleaching agent for corals and CCA under high irradiance, acting synergistically with warming to lower thermal bleaching thresholds. We propose that CO2 induces bleaching via its impact on photoprotective mechanisms of the photosystems. Overall, acidification impacted more strongly on bleaching and productivity than on calcification. Interestingly, the intermediate, warm CO2 scenario led to a 30% increase in productivity in Acropora, whereas high CO2 lead to zero productivity in both corals. CCA were most sensitive to acidification, with high CO2 leading to negative productivity and high rates of net dissolution. Our findings suggest that sensitive reef-building species such as CCA may be pushed beyond their thresholds for growth and survival within the next few decades whereas corals will show delayed and mixed responses.

B
Beijbom, O, Edmunds PJ, Roelfsema C, Smith J, Kline DI, Neal BP, Dunlap MJ, Moriarty V, Fan TY, Tan CJ, Chan S, Treibitz T, Gamst A, Mitchell BG, Kriegman D.  2015.  Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. Plos One. 10   10.1371/journal.pone.0130312   AbstractWebsite

Global climate change and other anthropogenic stressors have heightened the need to rapidly characterize ecological changes in marine benthic communities across large scales. Digital photography enables rapid collection of survey images to meet this need, but the subsequent image annotation is typically a time consuming, manual task. We investigated the feasibility of using automated point-annotation to expedite cover estimation of the 17 dominant benthic categories from survey-images captured at four Pacific coral reefs. Inter- and intra- annotator variability among six human experts was quantified and compared to semi- and fully- automated annotation methods, which are made available at coralnet.ucsd. edu. Our results indicate high expert agreement for identification of coral genera, but lower agreement for algal functional groups, in particular between turf algae and crustose coralline algae. This indicates the need for unequivocal definitions of algal groups, careful training of multiple annotators, and enhanced imaging technology. Semi-automated annotation, where 50% of the annotation decisions were performed automatically, yielded cover estimate errors comparable to those of the human experts. Furthermore, fully-automated annotation yielded rapid, unbiased cover estimates but with increased variance. These results show that automated annotation can increase spatial coverage and decrease time and financial outlay for image-based reef surveys.

Beijbom, O, Treibitz T, Kline DI, Eyal G, Khen A, Neal B, Loya Y, Mitchell GB, Kriegman D.  2016.  Improving automated annotation of benthic survey images using wide-band fluorescence. Scientific reports. 6:23166.: Nature Publishing Group Abstract
n/a
Bongaerts, P, Bridge TCL, Kline DI, Muir PR, Wallace CC, Hoegh-Guldberg O, Beaman RJ.  2011.  Mesophotic coral ecosystems on the walls of Coral Sea atolls. Coral Reefs. 30:335-335.   10.1007/s00338-011-0725-7   Website
C
Calamia, MA, Kline DI, Kago S, Donovan K, Dulunaqio S, Tabaleka T, Mitchell BG.  2010.  Marine-based community conserved areas in Fiji: an example of indigenous governance and partnership. Indigenous peoples and conservation: from rights to resource management. ( Walker Painemilla K, Rylands AB, Woofter A, Hughers C, Eds.).:95-114., Arlington, VA.: Conservation International Abstract
n/a
Casas, V, Kline DI, Wegley L, Yu YN, Breitbart M, Rohwer F.  2004.  Widespread association of a Rickettsiales-like bacterium with reef-building corals. Environmental Microbiology. 6:1137-1148.   10.1111/j.1462-2920.2004.00647.x   AbstractWebsite

White band disease type I (WBD I) has been a major cause of the dramatic decline of Acroporid coral populations throughout the Caribbean during the last two decades, yet the aetiological agent of this disease is unknown. In this study, the bacterial communities associated with both healthy and diseased Acropora species were compared by 16S rDNA analyses. The bacterial communities of both healthy and diseased Acropora spp. were dominated by a single ribotype with 90% identity to a bacterium in the order Rickettsiales. Screening by nested PCR specific to the coral-associated Rickettsiales 1 (CAR1) bacterium showed that this microbe was widespread in both healthy and diseased A. cervicornis and A. palmata corals from 'healthy' (i.e. low WBD I incidence) and 'stressed' reefs (i.e. high WBD I incidence). These results indicate that there were no dramatic changes in the composition of the microbial community associated with WBD I. CAR1 was also associated with non-Acroporid corals of the Caribbean, as well as with two Acroporid corals native to the Pacific. CAR1 was not present in the water column. This bacterium was also absent from preserved Caribbean Acroporid samples collected between 1937 and 1980 before the outbreak of WBD I. These results suggest CAR1 is a relatively new bacterial associate of Acroporids and that a non-bacterial pathogen might be the cause of WBD I.

Connell, SD, Kroeker KJ, Fabricius KE, Kline DI, Russell BD.  2013.  The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philosophical Transactions of the Royal Society B-Biological Sciences. 368   10.1098/rstb.2012.0442   AbstractWebsite

Predictions concerning the consequences of the oceanic uptake of increasing atmospheric carbon dioxide (CO2) have been primarily occupied with the effects of ocean acidification on calcifying organisms, particularly those critical to the formation of habitats (e. g. coral reefs) or their maintenance (e. g. grazing echinoderms). This focus overlooks direct and indirect effects of CO2 on non-calcareous taxa that play critical roles in ecosystem shifts (e. g. competitors). We present the model that future atmospheric [CO2] may act as a resource for mat-forming algae, a diverse and widespread group known to reduce the resilience of kelp forests and coral reefs. We test this hypothesis by combining laboratory and field CO2 experiments and data from 'natural' volcanic CO2 vents. We show that mats have enhanced productivity in experiments and more expansive covers in situ under projected near-future CO2 conditions both in temperate and tropical conditions. The benefits of CO2 are likely to vary among species of producers, potentially leading to shifts in species dominance in a high CO2 world. We explore how ocean acidification combines with other environmental changes across a number of scales, and raise awareness of CO2 as a resource whose change in availability could have wide-ranging community consequences beyond its direct effects.

Crawley, A, Kline DI, Dunn S, Anthony K, Dove S.  2010.  The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Global Change Biology. 16:851-863.   10.1111/j.1365-2486.2009.01943.x   AbstractWebsite

Ocean acidification is expected to lower the net accretion of coral reefs yet little is known about its effect on coral photophysiology. This study investigated the effect of increasing CO(2) on photosynthetic capacity and photoprotection in Acropora formosa. The photoprotective role of photorespiration within dinoflagellates (genus Symbiodinium) has largely been overlooked due to focus on the presence of a carbon-concentrating mechanism despite the evolutionary persistence of a Form II Rubisco. The photorespiratory fixation of oxygen produces phosphoglycolate that would otherwise inhibit carbon fixation though the Calvin cycle if it were not converted to glycolate by phosphoglycolate phosphatase (PGPase). Glycolate is then either excreted or dealt with by enzymes in the photorespiratory glycolate and/or glycerate pathways adding to the pool of carbon fixed in photosynthesis. We found that CO(2) enrichment led to enhanced photoacclimation (increased chlorophyll a per cell) to the subsaturating light levels. Light-enhanced dark respiration per cell and xanthophyll de-epoxidation increased, with resultant decreases in photosynthetic capacity (P(nmax)) per chlorophyll. The conservative CO(2) emission scenario (A1B; 600-790 ppm) led to a 38% increase in the P(nmax) per cell whereas the 'business-as-usual' scenario (A1F1; 1160-1500 ppm) led to a 45% reduction in PGPase expression and no change in P(nmax) per cell. These findings support an important functional role for PGPase in dinoflagellates that is potentially compromised under CO(2) enrichment.

Cyronak, T, Andersson AJ, Langdon C, Albright R, Bates NR, Caldeira K, Carlton R, Corredor JE, Dunbar RB, Enochs I, Erez J, Eyre BD, Gattuso JP, Gledhill D, Kayanne H, Kline DI, Koweek DA, Lantz C, Lazar B, Manzello D, McMahon A, Melendez M, Page HN, Santos IR, Schulz KG, Shaw E, Silverman J, Suzuki A, Teneva L, Watanabe A, Yamamoto S.  2018.  Taking the metabolic pulse of the world's coral reefs. Plos One. 13   10.1371/journal.pone.0190872   AbstractWebsite

Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems.

D
Diaz-Pulido, G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O.  2012.  Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. Journal of Phycology. 48:32-39.   10.1111/j.1529-8817.2011.01084.x   AbstractWebsite

Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2). Little is known, however, about the combined impacts of increased pCO2, ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from <1% to 9% under high CO2 (from 400 to 1,100 ppm) and exacerbated to 15% under warming conditions (from 26 degrees C to 29 degrees C). Furthermore, the effect of pCO2 on skeletal dissolution strongly depended on temperature. Dissolution of P. onkodes only occurred in the high-pCO2 treatment and was greater in the warm treatment. Enhanced skeletal dissolution was also associated with a significant increase in the abundance of endolithic algae. Our results demonstrate that P. onkodes is particularly sensitive to ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems.

Diaz-Pulido, G, McCook LJ, Dove S, Berkelmans R, Roff G, Kline DI, Weeks S, Evans RD, Williamson DH, Hoegh-Guldberg O.  2009.  Doom and boom on a resilient reef: climate change, agal overgrowth and coral recovery. Plos One. 4   10.1371/journal.pone.0005239   AbstractWebsite

Background: Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance. Methodology/Principal Findings: In 2006, mass bleaching of corals on inshore reefs of the Great Barrier Reef caused high coral mortality. Here we show that this coral mortality was followed by an unprecedented bloom of a single species of unpalatable seaweed (Lobophora variegata), colonizing dead coral skeletons, but that corals on these reefs recovered dramatically, in less than a year. Unexpectedly, this rapid reversal did not involve reestablishment of corals by recruitment of coral larvae, as often assumed, but depended on several ecological mechanisms previously underestimated. Conclusions/Significance: These mechanisms of ecological recovery included rapid regeneration rates of remnant coral tissue, very high competitive ability of the corals allowing them to out-compete the seaweed, a natural seasonal decline in the particular species of dominant seaweed, and an effective marine protected area system. Our study provides a key example of the doom and boom of a highly resilient reef, and new insights into the variability and mechanisms of reef resilience under rapid climate change.

Dove, SG, Kline DI, Pantos O, Angly FE, Tyson GW, Hoegh-Guldberg O.  2013.  Future reef decalcification under a business-as-usual CO2 emission scenario. Proceedings of the National Academy of Sciences. 110:15342-15347.   10.1073/pnas.1302701110   AbstractWebsite

Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century.

Du, N, Gholami P, Kline DI, Dupont CL, Dickson AG, Mendola D, Martz T, Allen AE, Mitchell GB.  2018.  Simultaneous quantum yield measurements of carbon uptake and oxygen evolution in microalgal cultures. PloS one. 13(6):e0199125.: Public Library of Science   10.1371/journal.pone.0199125   Abstract

n/a

E
Eakin, CM, Morgan JA, Heron SF, Smith TB, Liu G, Alvarez-Filip L, Baca B, Bartels E, Bastidas C, Bouchon C, Brandt M, Bruckner AW, Bunkley-Williams L, Cameron A, Causey BD, Chiappone M, Christensen TRL, Crabbe MJC, Day O, de la Guardia E, Diaz-Pulido G, DiResta D, Gil-Agudelo DL, Gilliam DS, Ginsburg RN, Gore S, Guzman HM, Hendee JC, Hernandez-Delgado EA, Husain E, Jeffrey CFG, Jones RJ, Jordan-Dahlgren E, Kaufman LS, Kline DI, Kramer PA, Lang JC, Lirman D, Mallela J, Manfrino C, Marechal JP, Marks K, Mihaly J, Miller WJ, Mueller EM, Muller EM, Toro CAO, Oxenford HA, Ponce-Taylor D, Quinn N, Ritchie KB, Rodriguez S, Ramirez AR, Romano S, Samhouri JF, Sanchez JA, Schmahl GP, Shank BV, Skirving WJ, Steiner SCC, Villamizar E, Walsh SM, Walter C, Weil E, Williams EH, Roberson KW, Yusuf Y.  2010.  Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005. Plos One. 5   10.1371/journal.pone.0013969   AbstractWebsite

Background: The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. Methodology/Principal Findings: Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. Conclusions/Significance: Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.

F
Fang, JKH, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S.  2012.  Methods to quantify components of the excavating sponge Cliona orientalis Thiele, 1900. Marine Ecology. :n/a-n/a.   10.1111/maec.12005   AbstractWebsite

This study applied the loss after combustion (LAC) method and the acid decalcification (ADC) method to quantify different components of an excavating sponge. Samples of dried coral skeleton of Favia sp. invaded by the Indo-Pacific excavating sponge Cliona orientalis Thiele, 1900 were used. The sponge tissue penetrated the 12-mm-thick samples to approximately 10 mm. The average proportional weight of organic matter, siliceous spicules, calcareous substrate and salts in the entire samples was found to be respectively 2.5%, 4.4%, 90.5% and 2.5% of dry weight applying the LAC method, and 2.9%, 5.9%, 89.0% and 2.3% of dry weight applying the ADC method. Respective volumetric proportions of the organic matter, spicules, substrate and salts were then calculated to be 6.4%, 5.5%, 85.2% and 3.0% of volume with the LAC method, and 7.4%, 7.2%, 82.7% and 2.7% of volume with the ADC method. The LAC method showed low variability of data and is simple and fast and therefore is recommended. The ADC method generated very similar results to the LAC method. However, due to the handling involved in the ADC method, more than half of the spicules may be lost and the method is therefore not recommended unless careful data corrections are considered. In addition, the buoyant weight method was used to quantify actual substrate weight in the fresh sponge-substrate samples. This method was found to be at least 97% effective, revealing that buoyant weights can potentially be used to quantify bioerosion rates of excavating sponges. To our knowledge, this is the first study to systemically quantify organic and inorganic components of an excavating sponge and its calcareous substrate, providing improved standard methods for future studies.

G
Gattuso, JP, Kirkwood W, Barry JP, Cox E, Gazeau F, Hansson L, Hendriks I, Kline DI, Mahacek P, Martin S, McElhany P, Peltzer ET, Reeve J, Roberts D, Saderne V, Tait K, Widdicombe S, Brewer PG.  2014.  Free-ocean CO2 enrichment (FOCE) systems: present status and future developments. Biogeosciences. 11:4057-4075.   10.5194/bg-11-4057-2014   AbstractWebsite

Free-ocean CO2 enrichment (FOCE) systems are designed to assess the impact of ocean acidification on biological communities in situ for extended periods of time (weeks to months). They overcome some of the drawbacks of laboratory experiments and field observations by enabling (1) precise control of CO2 enrichment by monitoring pH as an offset of ambient pH, (2) consideration of indirect effects such as those mediated through interspecific relationships and food webs, and (3) relatively long experiments with intact communities. Bringing perturbation experiments from the laboratory to the field is, however, extremely challenging. The main goal of this paper is to provide guidelines on the general design, engineering, and sensor options required to conduct FOCE experiments. Another goal is to introduce xFOCE, a community-led initiative to promote awareness, provide resources for in situ perturbation experiments, and build a user community. Present and existing FOCE systems are briefly described and examples of data collected presented. Future developments are also addressed as it is anticipated that the next generation of FOCE systems will include, in addition to pH, options for oxygen and/or temperature control. FOCE systems should become an important experimental approach for projecting the future response of marine ecosystems to environmental change.

Georgiou, L, Falter J, Trotter J, Kline DI, Holcomb M, Dove SG, Hoegh-Guldberg O, McCulloch M.  2015.  pH homeostasis during coral calcification in a Free Ocean CO2 Enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef. . Proceedings of the National Academy of Sciences . 112(43):13219-13224.   10.1073/pnas.1505586112  
Gonzalez-Rivero, M, Bongaerts P, Beijbom O, Pizarro O, Friedman A, Rodriguez-Ramirez A, Upcroft B, Laffoley D, Kline D, Bailhache C, Vevers R, Hoegh-Guldberg O.  2014.  The Catlin Seaview Survey - kilometre-scale seascape assessment, and monitoring of coral reef ecosystems. Aquatic Conservation-Marine and Freshwater Ecosystems. 24:184-198.   10.1002/aqc.2505   AbstractWebsite

Marine ecosystems provide critically important goods and services to society, and hence their accelerated degradation underpins an urgent need to take rapid, ambitious and informed decisions regarding their conservation and management.The capacity, however, to generate the detailed field data required to inform conservation planning at appropriate scales is limited by time and resource consuming methods for collecting and analysing field data at the large scales required.The Catlin Seaview Survey', described here, introduces a novel framework for large-scale monitoring of coral reefs using high-definition underwater imagery collected using customized underwater vehicles in combination with computer vision and machine learning. This enables quantitative and geo-referenced outputs of coral reef features such as habitat types, benthic composition, and structural complexity (rugosity) to be generated across multiple kilometre-scale transects with a spatial resolution ranging from 2 to 6m(2).The novel application of technology described here has enormous potential to contribute to our understanding of coral reefs and associated impacts by underpinning management decisions with kilometre-scale measurements of reef health.Imagery datasets from an initial survey of 500km of seascape are freely available through an online tool called the Catlin Global Reef Record. Outputs from the image analysis using the technologies described here will be updated on the online repository as work progresses on each dataset.Case studies illustrate the utility of outputs as well as their potential to link to information from remote sensing. The potential implications of the innovative technologies on marine resource management and conservation are also discussed, along with the accuracy and efficiency of the methodologies deployed.10.1002/(ISSN)1099-0755 Copyright (c) 2014 John Wiley & Sons, Ltd.

Gormley, K, McLellan F, McCabe C, Hinton C, Ferris J, Kline DI, Scott BE.  2018.  Automated Image Analysis of Offshore Infrastructure Marine Biofouling. Journal of Marine Science and Engineering. 6(1):2.: Multidisciplinary Digital Publishing Institute Abstract
n/a
H
Hamilton, TJ, Tresguerres M, Kline DI.  2017.  Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish. Biology Letters. 13   10.1098/rsbl.2017.0183   Abstract

Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish (Stegastes partitus) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D1-receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates.

Hamilton, TJ, Kline DI, Tresguerres M.  2018.  Shoaling behaviour is differentially altered by ethanol and dopamine D1 receptor modulators in tropical marine forage fish. Canadian Journal of Fisheries and Aquatic Sciences. (999):1-6.: NRC Research Press Abstract
n/a
K
Kaniewska, P, Campbell PR, Kline DI, Rodriguez-Lanetty M, Miller DJ, Dove S, Hoegh-Guldberg O.  2012.  Major cellular and physiological impacts of ocean acidification on a reef building coral. Plos One. 7   10.1371/journal.pone.0034659   AbstractWebsite

As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.

Kaniewska, P, Chan C-KK, Kline D, Ling EYS, Rosic N, Edwards D, Hoegh-Guldberg O, Dove S.  2015.  Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change. . PLoS ONE . 10(10):e0139223.   10.1371/journal.pone.0139223