Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C [D] E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Reymond, CE, Lloyd A, Kline DI, Dove SG, Pandolfi JM.  2013.  Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Global Change Biology. 19:291-302.   10.1111/gcb.12035   AbstractWebsite

The combination of global and local stressors is leading to a decline in coral reef health globally. In the case of eutrophication, increased concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) are largely attributed to local land use changes. From the global perspective, increased atmospheric CO2 levels are not only contributing to global warming but also ocean acidification (OA). Both eutrophication and OA have serious implications for calcium carbonate production and dissolution among calcifying organisms. In particular, benthic foraminifera precipitate the most soluble form of mineral calcium carbonate (high-Mg calcite), potentially making them more sensitive to dissolution. In this study, a manipulative orthogonal two-factor experiment was conducted to test the effects of dissolved inorganic nutrients and OA on the growth, respiration and photophysiology of the large photosymbiont-bearing benthic foraminifer, Marginopora rossi. This study found the growth rate of M. rossi was inhibited by the interaction of eutrophication and acidification. The relationship between M. rossi and its photosymbionts became destabilized due to the photosymbiont's release from nutrient limitation in the nitrate-enriched treatment, as shown by an increase in zooxanthellae cells per host surface area. Foraminifers from the OA treatments had an increased amount of Chl a per cell, suggesting a greater potential to harvest light energy, however, there was no net benefit to the foraminifer growth. Overall, this study demonstrates that the impacts of OA and eutrophication are dose dependent and interactive. This research indicates an OA threshold at pH 7.6, alone or in combination with eutrophication, will lead to a decline in M. rossi calcification. The decline in foraminifera calcification associated with pollution and OA will have broad ecological implications across their ubiquitous range and suggests that without mitigation it could have serious implications for the future of coral reefs.

Nash, MC, Opdyke BN, Troitzsch U, Russell BD, Adey WH, Kato A, Diaz-Pulido G, Brent C, Gardner M, Prichard J, Kline DI.  2013.  Dolomite rich coral reef coralline algae resist dissolution in acidified conditions.. Nature Climate Change. 3:268-272.   10.1038/nclimate1760   Abstract

Coral reef ecosystems develop best in high-flow environments but their fragile frameworks are also vulnerable to high wave energy. Wave-resistant algal rims, predominantly made up of the crustose coralline algae (CCA) Porolithon onkodes and P. pachydermum1, 2, are therefore critical structural elements for the survival of many shallow coral reefs. Concerns are growing about the susceptibility of CCA to ocean acidification because CCA Mg-calcite skeletons are more susceptible to dissolution under low pH conditions than coral aragonite skeletons3. However, the recent discovery4 of dolomite (Mg0.5Ca0.5(CO3)), a stable carbonate5, in P. onkodes cells necessitates a reappraisal of the impacts of ocean acidification on these CCA. Here we show, using a dissolution experiment, that dried dolomite-rich CCA have 6–10 times lower rates of dissolution than predominantly Mg-calcite CCA in both high-CO2 (~ 700 ppm) and control (~ 380 ppm) environments, respectively. We reveal this stabilizing mechanism to be a combination of reduced porosity due to dolomite infilling and selective dissolution of other carbonate minerals. Physical break-up proceeds by dissolution of Mg-calcite walls until the dolomitized cell eventually drops out intact. Dolomite-rich CCA frameworks are common in shallow coral reefs globally and our results suggest that it is likely that they will continue to provide protection and stability for coral reef frameworks as CO2

Diaz-Pulido, G, McCook LJ, Dove S, Berkelmans R, Roff G, Kline DI, Weeks S, Evans RD, Williamson DH, Hoegh-Guldberg O.  2009.  Doom and boom on a resilient reef: climate change, agal overgrowth and coral recovery. Plos One. 4   10.1371/journal.pone.0005239   AbstractWebsite

Background: Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance. Methodology/Principal Findings: In 2006, mass bleaching of corals on inshore reefs of the Great Barrier Reef caused high coral mortality. Here we show that this coral mortality was followed by an unprecedented bloom of a single species of unpalatable seaweed (Lobophora variegata), colonizing dead coral skeletons, but that corals on these reefs recovered dramatically, in less than a year. Unexpectedly, this rapid reversal did not involve reestablishment of corals by recruitment of coral larvae, as often assumed, but depended on several ecological mechanisms previously underestimated. Conclusions/Significance: These mechanisms of ecological recovery included rapid regeneration rates of remnant coral tissue, very high competitive ability of the corals allowing them to out-compete the seaweed, a natural seasonal decline in the particular species of dominant seaweed, and an effective marine protected area system. Our study provides a key example of the doom and boom of a highly resilient reef, and new insights into the variability and mechanisms of reef resilience under rapid climate change.

Hamilton, TJ, Tresguerres M, Kline DI.  2017.  Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish. Biology Letters. 13   10.1098/rsbl.2017.0183   Abstract

Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish (Stegastes partitus) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D1-receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates.