Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Gonzalez-Rivero, M, Bongaerts P, Beijbom O, Pizarro O, Friedman A, Rodriguez-Ramirez A, Upcroft B, Laffoley D, Kline D, Bailhache C, Vevers R, Hoegh-Guldberg O.  2014.  The Catlin Seaview Survey - kilometre-scale seascape assessment, and monitoring of coral reef ecosystems. Aquatic Conservation-Marine and Freshwater Ecosystems. 24:184-198.   10.1002/aqc.2505   AbstractWebsite

Marine ecosystems provide critically important goods and services to society, and hence their accelerated degradation underpins an urgent need to take rapid, ambitious and informed decisions regarding their conservation and management.The capacity, however, to generate the detailed field data required to inform conservation planning at appropriate scales is limited by time and resource consuming methods for collecting and analysing field data at the large scales required.The Catlin Seaview Survey', described here, introduces a novel framework for large-scale monitoring of coral reefs using high-definition underwater imagery collected using customized underwater vehicles in combination with computer vision and machine learning. This enables quantitative and geo-referenced outputs of coral reef features such as habitat types, benthic composition, and structural complexity (rugosity) to be generated across multiple kilometre-scale transects with a spatial resolution ranging from 2 to 6m(2).The novel application of technology described here has enormous potential to contribute to our understanding of coral reefs and associated impacts by underpinning management decisions with kilometre-scale measurements of reef health.Imagery datasets from an initial survey of 500km of seascape are freely available through an online tool called the Catlin Global Reef Record. Outputs from the image analysis using the technologies described here will be updated on the online repository as work progresses on each dataset.Case studies illustrate the utility of outputs as well as their potential to link to information from remote sensing. The potential implications of the innovative technologies on marine resource management and conservation are also discussed, along with the accuracy and efficiency of the methodologies deployed.10.1002/(ISSN)1099-0755 Copyright (c) 2014 John Wiley & Sons, Ltd.

Silverman, J, Schneider K, Kline DI, Rivlin T, Rivlin A, Hamylton S, Lazar B, Erez J, Caldeira K.  2014.  Community calcification in Lizard Island, Great Barrier Reef: A 33 year perspective. Geochimica Et Cosmochimica Acta. 144:72-81.   10.1016/j.gca.2014.09.011   AbstractWebsite

Measurements of community calcification (G(net)) were made during September 2008 and October 2009 on a reef flat in Lizard Island, Great Barrier Reef, Australia, 33 years after the first measurements were made there by the LIMER expedition in 1975. In 2008 and 2009 we measured G(net) = 61 +/- 12 and 54 +/- 13 mmol CaCO3 m(-2).day(-1), respectively. These rates are 27-49% lower than those measured during the same season in 1975-76. These rates agree well with those estimated from the measured temperature and degree of aragonite saturation using a reef calcification rate equation developed from observations in a Red Sea coral reef. Community structure surveys across the Lizard Island reef flat during our study using the same methods employed in 1978 showed that live coral coverage had not changed significantly (similar to 8%). However, it should be noted that the uncertainty in the live coral coverage estimates in this study and in 1978 were fairly large and inherent to this methodology. Using the reef calcification rate equation while assuming that seawater above the reef was at equilibrium with atmospheric PCO2 and given that live coral cover had not changed G(net) should have declined by 30 +/- 8% since the LIMER study as indeed observed. We note, however, that the error in estimated G(net) decrease relative to the 1970's could be much larger due to the uncertainties in the coral coverage measurements. Nonetheless, the similarity between the predicted and the measured decrease in G(net) suggests that ocean acidification may be the primary cause for the lower CaCO3 precipitation rate on the Lizard Island reef flat. (C) 2014 Elsevier Ltd. All rights reserved.

Diaz-Pulido, G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O.  2012.  Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. Journal of Phycology. 48:32-39.   10.1111/j.1529-8817.2011.01084.x   AbstractWebsite

Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2). Little is known, however, about the combined impacts of increased pCO2, ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from <1% to 9% under high CO2 (from 400 to 1,100 ppm) and exacerbated to 15% under warming conditions (from 26 degrees C to 29 degrees C). Furthermore, the effect of pCO2 on skeletal dissolution strongly depended on temperature. Dissolution of P. onkodes only occurred in the high-pCO2 treatment and was greater in the warm treatment. Enhanced skeletal dissolution was also associated with a significant increase in the abundance of endolithic algae. Our results demonstrate that P. onkodes is particularly sensitive to ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems.