Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Silverman, J, Schneider K, Kline DI, Rivlin T, Rivlin A, Hamylton S, Lazar B, Erez J, Caldeira K.  2014.  Community calcification in Lizard Island, Great Barrier Reef: A 33 year perspective. Geochimica Et Cosmochimica Acta. 144:72-81.   10.1016/j.gca.2014.09.011   AbstractWebsite

Measurements of community calcification (G(net)) were made during September 2008 and October 2009 on a reef flat in Lizard Island, Great Barrier Reef, Australia, 33 years after the first measurements were made there by the LIMER expedition in 1975. In 2008 and 2009 we measured G(net) = 61 +/- 12 and 54 +/- 13 mmol CaCO3 m(-2).day(-1), respectively. These rates are 27-49% lower than those measured during the same season in 1975-76. These rates agree well with those estimated from the measured temperature and degree of aragonite saturation using a reef calcification rate equation developed from observations in a Red Sea coral reef. Community structure surveys across the Lizard Island reef flat during our study using the same methods employed in 1978 showed that live coral coverage had not changed significantly (similar to 8%). However, it should be noted that the uncertainty in the live coral coverage estimates in this study and in 1978 were fairly large and inherent to this methodology. Using the reef calcification rate equation while assuming that seawater above the reef was at equilibrium with atmospheric PCO2 and given that live coral cover had not changed G(net) should have declined by 30 +/- 8% since the LIMER study as indeed observed. We note, however, that the error in estimated G(net) decrease relative to the 1970's could be much larger due to the uncertainties in the coral coverage measurements. Nonetheless, the similarity between the predicted and the measured decrease in G(net) suggests that ocean acidification may be the primary cause for the lower CaCO3 precipitation rate on the Lizard Island reef flat. (C) 2014 Elsevier Ltd. All rights reserved.

Diaz-Pulido, G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O.  2012.  Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. Journal of Phycology. 48:32-39.   10.1111/j.1529-8817.2011.01084.x   AbstractWebsite

Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2). Little is known, however, about the combined impacts of increased pCO2, ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from <1% to 9% under high CO2 (from 400 to 1,100 ppm) and exacerbated to 15% under warming conditions (from 26 degrees C to 29 degrees C). Furthermore, the effect of pCO2 on skeletal dissolution strongly depended on temperature. Dissolution of P. onkodes only occurred in the high-pCO2 treatment and was greater in the warm treatment. Enhanced skeletal dissolution was also associated with a significant increase in the abundance of endolithic algae. Our results demonstrate that P. onkodes is particularly sensitive to ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems.

Silverman, J, Kline DI, Johnson L, Rivlin T, Schneider K, Erez J, Lazar B, Caldeira K.  2012.  Carbon turnover rates in the One Tree Island reef: A 40-year perspective. Journal of Geophysical Research-Biogeosciences. 117   10.1029/2012jg001974   AbstractWebsite

During November-December 2009 community rates of gross photosynthesis (P-g), respiration (R) and net calcification (G(net)) were estimated from low-tide slack water measurements of dissolved oxygen, dissolved inorganic carbon and total alkalinity at the historical station DK13 One Tree Island reef, Great Barrier Reef, Australia. Compared to measurements made during the 1960s-1970s at DK13 in the same season, P-g increased from 833 to 914 mmol O-2 center dot m(-2).d(-1) and P-g:R increased from 1.14 to 1.30, indicating that the reef has become more autotrophic. In contrast, G(net) decreased from 133 mmol C.m(-2).d(-1) to 74 +/- 24 mmol C.m(-2).d(-1). This decrease stems primarily from the threefold increase in nighttime CaCO3 dissolution from -2.5 mmol.m(-2).h(-1) to -7.5 mmol.m(-2).h(-1). Comparison of the benthic community survey results from DK13 and its vicinity conducted during this study and in studies from the 1970s, 1980s and 1990s suggest that there have been no significant changes in the live coral coverage during the past 40 years. The reduced G(net) most likely reflects the almost threefold increase in dissolution rates, possibly resulting from increased bioerosion due to changes in the biota (e.g., sea cucumbers, boring organisms) and/or from greater chemical dissolution produced by changing abiotic conditions over the past 40 years associated with climate change, such as increased temperatures and ocean acidification. However, at this stage of research on One Tree Island the effects of these changes are not entirely understood.