Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Stark, JS, Peltzer ET, Kline DI, Queiros AM, Cox TE, Headley K, Barry J, Gazeau F, Runcie JW, Widdicombe S, Milnes M, Roden NP, Black J, Whiteside S, Johnstone G, Ingels J, Shaw E, Bodrossy L, Gaitan-Espitia JD, Kirkwood W, Gattuso J.  2019.  Free Ocean CO2 Enrichment (FOCE) experiments: Scientific and technical recommendations for future in situ ocean acidification projects. Progress in Oceanography. 172:89-107.   10.1016/j.pocean.2019.01.006   AbstractWebsite

Free Ocean CO2 Enrichment (FOCE) experiments are a relatively recent development in ocean acidification research, designed to address the need for in situ, long-term, community level experiments. FOCE studies have been conducted across different marine benthic habitats and regions, from Antarctica to the tropics. Based on this previous research we have formed some core operating principles that will aid those embarking on future FOCE experiments. FOCE studies have potential to provide important insight into the effects of ocean acidification that can add to or refine conclusions drawn from laboratory or single species studies because they are conducted in situ on intact assemblages. Scaling up from sub-organismal and individual effects to also include indirect impacts on the ecosystem and ecosystem services, make FOCE experiments essential in filling in current knowledge gaps in our understanding of ocean acidification. While FOCE systems are complex, relatively costly, and somewhat difficult to operate, the challenges they pose are tractable and they have proven to be a useful approach in ocean acidification research. The aim of this paper is to draw from the experiences of past FOCE experiments and provide practical advice for designing, building and operating a FOCE experiment. Some of the most important recommendations include: field testing the system design; having a backup power supply; using replicate treatment enclosures; monitoring and maintaining the chemistry appropriately; allowing sufficient time to achieve near CO2 equilibrium conditions; and having a scientific focus with a core set of hypotheses. Future FOCE experiments could focus on longer durations, multiple factors, and testing more intact benthic marine communities and ecosystems. We hope this paper will encourage further FOCE deployments and experiments, as well as provide some guidelines to improve future FOCE studies and advance ocean acidification research.

2013
Connell, SD, Kroeker KJ, Fabricius KE, Kline DI, Russell BD.  2013.  The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philosophical Transactions of the Royal Society B-Biological Sciences. 368   10.1098/rstb.2012.0442   AbstractWebsite

Predictions concerning the consequences of the oceanic uptake of increasing atmospheric carbon dioxide (CO2) have been primarily occupied with the effects of ocean acidification on calcifying organisms, particularly those critical to the formation of habitats (e. g. coral reefs) or their maintenance (e. g. grazing echinoderms). This focus overlooks direct and indirect effects of CO2 on non-calcareous taxa that play critical roles in ecosystem shifts (e. g. competitors). We present the model that future atmospheric [CO2] may act as a resource for mat-forming algae, a diverse and widespread group known to reduce the resilience of kelp forests and coral reefs. We test this hypothesis by combining laboratory and field CO2 experiments and data from 'natural' volcanic CO2 vents. We show that mats have enhanced productivity in experiments and more expansive covers in situ under projected near-future CO2 conditions both in temperate and tropical conditions. The benefits of CO2 are likely to vary among species of producers, potentially leading to shifts in species dominance in a high CO2 world. We explore how ocean acidification combines with other environmental changes across a number of scales, and raise awareness of CO2 as a resource whose change in availability could have wide-ranging community consequences beyond its direct effects.

2012
Diaz-Pulido, G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O.  2012.  Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. Journal of Phycology. 48:32-39.   10.1111/j.1529-8817.2011.01084.x   AbstractWebsite

Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2). Little is known, however, about the combined impacts of increased pCO2, ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from <1% to 9% under high CO2 (from 400 to 1,100 ppm) and exacerbated to 15% under warming conditions (from 26 degrees C to 29 degrees C). Furthermore, the effect of pCO2 on skeletal dissolution strongly depended on temperature. Dissolution of P. onkodes only occurred in the high-pCO2 treatment and was greater in the warm treatment. Enhanced skeletal dissolution was also associated with a significant increase in the abundance of endolithic algae. Our results demonstrate that P. onkodes is particularly sensitive to ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems.