Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
Cyronak, T, Andersson AJ, Langdon C, Albright R, Bates NR, Caldeira K, Carlton R, Corredor JE, Dunbar RB, Enochs I, Erez J, Eyre BD, Gattuso JP, Gledhill D, Kayanne H, Kline DI, Koweek DA, Lantz C, Lazar B, Manzello D, McMahon A, Melendez M, Page HN, Santos IR, Schulz KG, Shaw E, Silverman J, Suzuki A, Teneva L, Watanabe A, Yamamoto S.  2018.  Taking the metabolic pulse of the world's coral reefs. Plos One. 13   10.1371/journal.pone.0190872   AbstractWebsite

Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems.

Silverman, J, Schneider K, Kline DI, Rivlin T, Rivlin A, Hamylton S, Lazar B, Erez J, Caldeira K.  2014.  Community calcification in Lizard Island, Great Barrier Reef: A 33 year perspective. Geochimica Et Cosmochimica Acta. 144:72-81.   10.1016/j.gca.2014.09.011   AbstractWebsite

Measurements of community calcification (G(net)) were made during September 2008 and October 2009 on a reef flat in Lizard Island, Great Barrier Reef, Australia, 33 years after the first measurements were made there by the LIMER expedition in 1975. In 2008 and 2009 we measured G(net) = 61 +/- 12 and 54 +/- 13 mmol CaCO3 m(-2).day(-1), respectively. These rates are 27-49% lower than those measured during the same season in 1975-76. These rates agree well with those estimated from the measured temperature and degree of aragonite saturation using a reef calcification rate equation developed from observations in a Red Sea coral reef. Community structure surveys across the Lizard Island reef flat during our study using the same methods employed in 1978 showed that live coral coverage had not changed significantly (similar to 8%). However, it should be noted that the uncertainty in the live coral coverage estimates in this study and in 1978 were fairly large and inherent to this methodology. Using the reef calcification rate equation while assuming that seawater above the reef was at equilibrium with atmospheric PCO2 and given that live coral cover had not changed G(net) should have declined by 30 +/- 8% since the LIMER study as indeed observed. We note, however, that the error in estimated G(net) decrease relative to the 1970's could be much larger due to the uncertainties in the coral coverage measurements. Nonetheless, the similarity between the predicted and the measured decrease in G(net) suggests that ocean acidification may be the primary cause for the lower CaCO3 precipitation rate on the Lizard Island reef flat. (C) 2014 Elsevier Ltd. All rights reserved.

Gattuso, JP, Kirkwood W, Barry JP, Cox E, Gazeau F, Hansson L, Hendriks I, Kline DI, Mahacek P, Martin S, McElhany P, Peltzer ET, Reeve J, Roberts D, Saderne V, Tait K, Widdicombe S, Brewer PG.  2014.  Free-ocean CO2 enrichment (FOCE) systems: present status and future developments. Biogeosciences. 11:4057-4075.   10.5194/bg-11-4057-2014   AbstractWebsite

Free-ocean CO2 enrichment (FOCE) systems are designed to assess the impact of ocean acidification on biological communities in situ for extended periods of time (weeks to months). They overcome some of the drawbacks of laboratory experiments and field observations by enabling (1) precise control of CO2 enrichment by monitoring pH as an offset of ambient pH, (2) consideration of indirect effects such as those mediated through interspecific relationships and food webs, and (3) relatively long experiments with intact communities. Bringing perturbation experiments from the laboratory to the field is, however, extremely challenging. The main goal of this paper is to provide guidelines on the general design, engineering, and sensor options required to conduct FOCE experiments. Another goal is to introduce xFOCE, a community-led initiative to promote awareness, provide resources for in situ perturbation experiments, and build a user community. Present and existing FOCE systems are briefly described and examples of data collected presented. Future developments are also addressed as it is anticipated that the next generation of FOCE systems will include, in addition to pH, options for oxygen and/or temperature control. FOCE systems should become an important experimental approach for projecting the future response of marine ecosystems to environmental change.

Kline, DI, Teneva L, Schneider K, Miard T, Chai A, Marker M, Headley K, Opdyke B, Nash M, Valetich M, Caves JK, Russell BD, Connell SD, Kirkwood BJ, Brewer P, Peltzer E, Silverman J, Caldeira K, Dunbar RB, Koseff JR, Monismith SG, Mitchell BG, Dove S, Hoegh-Guldberg O.  2012.  A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Scientific Reports. 2   10.1038/srep00413   AbstractWebsite

Ocean acidification poses multiple challenges for coral reefs on molecular to ecological scales, yet previous experimental studies of the impact of projected CO2 concentrations have mostly been done in aquarium systems with corals removed from their natural ecosystem and placed under artificial light and seawater conditions. The Coral-Proto Free Ocean Carbon Enrichment System (CP-FOCE) uses a network of sensors to monitor conditions within each flume and maintain experimental pH as an offset from environmental pH using feedback control on the injection of low pH seawater. Carbonate chemistry conditions maintained in the -0.06 and -0.22 pH offset treatments were significantly different than environmental conditions. The results from this short-term experiment suggest that the CP-FOCE is an important new experimental system to study in situ impacts of ocean acidification on coral reef ecosystems.

Diaz-Pulido, G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O.  2012.  Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. Journal of Phycology. 48:32-39.   10.1111/j.1529-8817.2011.01084.x   AbstractWebsite

Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2). Little is known, however, about the combined impacts of increased pCO2, ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from <1% to 9% under high CO2 (from 400 to 1,100 ppm) and exacerbated to 15% under warming conditions (from 26 degrees C to 29 degrees C). Furthermore, the effect of pCO2 on skeletal dissolution strongly depended on temperature. Dissolution of P. onkodes only occurred in the high-pCO2 treatment and was greater in the warm treatment. Enhanced skeletal dissolution was also associated with a significant increase in the abundance of endolithic algae. Our results demonstrate that P. onkodes is particularly sensitive to ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems.

Silverman, J, Kline DI, Johnson L, Rivlin T, Schneider K, Erez J, Lazar B, Caldeira K.  2012.  Carbon turnover rates in the One Tree Island reef: A 40-year perspective. Journal of Geophysical Research-Biogeosciences. 117   10.1029/2012jg001974   AbstractWebsite

During November-December 2009 community rates of gross photosynthesis (P-g), respiration (R) and net calcification (G(net)) were estimated from low-tide slack water measurements of dissolved oxygen, dissolved inorganic carbon and total alkalinity at the historical station DK13 One Tree Island reef, Great Barrier Reef, Australia. Compared to measurements made during the 1960s-1970s at DK13 in the same season, P-g increased from 833 to 914 mmol O-2 center dot m(-2).d(-1) and P-g:R increased from 1.14 to 1.30, indicating that the reef has become more autotrophic. In contrast, G(net) decreased from 133 mmol C.m(-2).d(-1) to 74 +/- 24 mmol C.m(-2).d(-1). This decrease stems primarily from the threefold increase in nighttime CaCO3 dissolution from -2.5 mmol.m(-2).h(-1) to -7.5 mmol.m(-2).h(-1). Comparison of the benthic community survey results from DK13 and its vicinity conducted during this study and in studies from the 1970s, 1980s and 1990s suggest that there have been no significant changes in the live coral coverage during the past 40 years. The reduced G(net) most likely reflects the almost threefold increase in dissolution rates, possibly resulting from increased bioerosion due to changes in the biota (e.g., sea cucumbers, boring organisms) and/or from greater chemical dissolution produced by changing abiotic conditions over the past 40 years associated with climate change, such as increased temperatures and ocean acidification. However, at this stage of research on One Tree Island the effects of these changes are not entirely understood.

Nash, MC, Troitzsch U, Opdyke BN, Trafford JM, Russell BD, Kline DI.  2011.  First discovery of dolomite and magnesite in living coralline algae and its geobiological implications. Biogeosciences. 8:3331-3340.   10.5194/bg-8-3331-2011   AbstractWebsite

Dolomite is a magnesium-rich carbonate mineral abundant in fossil carbonate reef platforms but surprisingly rare in modern sedimentary environments, a conundrum known as the "Dolomite Problem". Marine sedimentary dolomite has been interpreted to form by an unconfirmed, post-depositional diagenetic process, despite minimal experimental success at replicating this. Here we show that dolomite, accompanied by magnesite, forms within living crustose coralline alga, Hydrolithon onkodes, a prolific global tropical reef species. Chemical micro-analysis of the coralline skeleton reveals that not only are the cell walls calcitised, but that cell spaces are typically filled with magnesite, rimmed by dolomite, or both. Mineralogy was confirmed by X-ray Diffraction. Thus there are at least three mineral phases present (magnesium calcite, dolomite and magnesite) rather than one or two (magnesium calcite and brucite) as previously thought. Our results are consistent with dolomite occurrences in coralline algae rich environments in fossil reefs of the last 60 million years. We reveal that the standard method of removing organic material prior to Xray Diffraction analysis can result in a decrease in the most obvious dolomite and magnesite diffraction patterns and this may explain why the abundant protodolomite and magnesite discovered in this study has not previously been recognized. This discovery of dolomite in living coralline algae extends the range of palaeo-environments for which biologically initiated dolomite can be considered a possible source of primary dolomite.