Export 44 results:
Sort by: Author Title Type [ Year  (Desc)]
Neal, BP, Khen A, Treibitz T, Beijbom O, O'Connor G, Coffroth MA, Knowlton N, Kriegman D, Mitchell BG, Kline DI.  2017.  Caribbean massive corals not recovering from repeated thermal stress events during 2005-2013. Ecology and Evolution. 7:1339-1353.   10.1002/ece3.2706   AbstractWebsite

Massive coral bleaching events associated with high sea surface temperatures are forecast to become more frequent and severe in the future due to climate change. Monitoring colony recovery from bleaching disturbances over multiyear time frames is important for improving predictions of future coral community changes. However, there are currently few multiyear studies describing long-term outcomes for coral colonies following acute bleaching events. We recorded colony pigmentation and size for bleached and unbleached groups of co-located conspecifics of three major reef-building scleractinian corals (Orbicella franksi, Siderastrea siderea, and Stephanocoenia michelini; n=198 total) in Bocas del Toro, Panama, during the major 2005 bleaching event and then monitored pigmentation status and changes live tissue colony size for 8years (2005-2013). Corals that were bleached in 2005 demonstrated markedly different response trajectories compared to unbleached colony groups, with extensive live tissue loss for bleached corals of all species following bleaching, with mean live tissue losses per colony 9 months postbleaching of 26.2% (+/- 5.4 SE) for O. franksi, 35.7% (+/- 4.7 SE) for S. michelini, and 11.2% (+/- 3.9 SE) for S. siderea. Two species, O. franksi and S. michelini, later recovered to net positive growth, which continued until a second thermal stress event in 2010. Following this event, all species again lost tissue, with previously unbleached colony species groups experiencing greater declines than conspecific sample groups, which were previously bleached, indicating a possible positive acclimative response. However, despite this beneficial effect for previously bleached corals, all groups experienced substantial net tissue loss between 2005 and 2013, indicating that many important Caribbean reef-building corals will likely suffer continued tissue loss and may be unable to maintain current benthic coverage when faced with future thermal stress forecast for the region, even with potential benefits from bleaching-related acclimation.

Tresguerres, M, Barott K, Barron ME, Deheyn D, Kline D, Linsmayer LB.  2017.  Cell Biology of Reef-Building Corals: Ion Transport, Acid/Base Regulation, and Energy Metabolism. Acid-Base Balance and Nitrogen Excretion in Invertebrates. ( Weihrauch D, O'Donnell M, Eds.).:193-218.: Springer International Publishing   10.1007/978-3-319-39617-0_7   Abstract

Coral reefs are built by colonial cnidarians that establish a symbiotic relationship with dinoflagellate algae of the genus Symbiodinium. The processes of photosynthesis, calcification, and general metabolism require the transport of diverse ions across several cellular membranes and generate waste products that induce acid/base and oxidative stress. This chapter reviews the current knowledge on coral cell biology with a focus on ion transport and acid/base regulation while also discussing related aspects of coral energy metabolism.

Neal, BP, Lin TH, Winter RN, Treibitz T, Beijbom O, Kriegman D, Kline DI, Mitchell BG.  2015.  Methods and measurement variance for field estimations of coral colony planar area using underwater photographs and semi-automated image. Environmental Monitoring and Assessment. 187   10.1007/s10661-015-4690-4   AbstractWebsite

Size and growth rates for individual colonies are some of the most essential descriptive parameters for understanding coral communities, which are currently experiencing worldwide declines in health and extent. Accurately measuring coral colony size and changes over multiple years can reveal demographic, growth, or mortality patterns often not apparent from shortterm observations and can expose environmental stress responses that may take years to manifest. Describing community size structure can reveal population dynamics patterns, such as periods of failed recruitment or patterns of colony fission, which have implications for the future sustainability of these ecosystems. However, rapidly and non-invasively measuring coral colony sizes in situ remains a difficult task, as three-dimensional underwater digital reconstruction methods are currently not practical for large numbers of colonies. Twodimensional (2D) planar area measurements from projection of underwater photographs are a practical size proxy, although this method presents operational difficulties in obtaining well-controlled photographs in the highly rugose environment of the coral reef, and requires extensive time for image processing. Here, we present and test the measurement variance for a method of making rapid planar area estimates of small to medium-sized coral colonies using a lightweight monopod image-framing system and a custom semiautomated image segmentation analysis program. This method demonstrated a coefficient of variation of 2.26 % for repeated measurements in realistic ocean conditions, a level of error appropriate for rapid, inexpensive field studies of coral size structure, inferring change in colony size over time, or measuring bleaching or disease extent of large numbers of individual colonies.

Beijbom, O, Edmunds PJ, Roelfsema C, Smith J, Kline DI, Neal BP, Dunlap MJ, Moriarty V, Fan TY, Tan CJ, Chan S, Treibitz T, Gamst A, Mitchell BG, Kriegman D.  2015.  Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. Plos One. 10   10.1371/journal.pone.0130312   AbstractWebsite

Global climate change and other anthropogenic stressors have heightened the need to rapidly characterize ecological changes in marine benthic communities across large scales. Digital photography enables rapid collection of survey images to meet this need, but the subsequent image annotation is typically a time consuming, manual task. We investigated the feasibility of using automated point-annotation to expedite cover estimation of the 17 dominant benthic categories from survey-images captured at four Pacific coral reefs. Inter- and intra- annotator variability among six human experts was quantified and compared to semi- and fully- automated annotation methods, which are made available at coralnet.ucsd. edu. Our results indicate high expert agreement for identification of coral genera, but lower agreement for algal functional groups, in particular between turf algae and crustose coralline algae. This indicates the need for unequivocal definitions of algal groups, careful training of multiple annotators, and enhanced imaging technology. Semi-automated annotation, where 50% of the annotation decisions were performed automatically, yielded cover estimate errors comparable to those of the human experts. Furthermore, fully-automated annotation yielded rapid, unbiased cover estimates but with increased variance. These results show that automated annotation can increase spatial coverage and decrease time and financial outlay for image-based reef surveys.

Treibitz, T, Neal BP, Kline DI, Beijbom O, Roberts PLD, Mitchell BG, Kriegman D.  2015.  Wide field-of-view fluorescence imaging of coral reefs. Scientific Reports. 5   10.1038/srep07694   AbstractWebsite

Coral reefs globally are declining rapidly because of both local and global stressors. Improved monitoring tools are urgently needed to understand the changes that are occurring at appropriate temporal and spatial scales. Coral fluorescence imaging tools have the potential to improve both ecological and physiological assessments. Although fluorescence imaging is regularly used for laboratory studies of corals, it has not yet been used for large-scale in situ assessments. Current obstacles to effective underwater fluorescence surveying include limited field-of-view due to low camera sensitivity, the need for nighttime deployment because of ambient light contamination, and the need for custom multispectral narrow band imaging systems to separate the signal into meaningful fluorescence bands. Here we describe the Fluorescence Imaging System (FluorIS), based on a consumer camera modified for greatly increased sensitivity to chlorophyll-a fluorescence, and we show high spectral correlation between acquired images and in situ spectrometer measurements. This system greatly facilitates underwater wide field-of-view fluorophore surveying during both night and day, and potentially enables improvements in semi-automated segmentation of live corals in coral reef photographs and juvenile coral surveys.

Georgiou, L, Falter J, Trotter J, Kline DI, Holcomb M, Dove SG, Hoegh-Guldberg O, McCulloch M.  2015.  pH homeostasis during coral calcification in a Free Ocean CO2 Enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef. . Proceedings of the National Academy of Sciences . 112(43):13219-13224.   10.1073/pnas.1505586112  
Kaniewska, P, Chan C-KK, Kline D, Ling EYS, Rosic N, Edwards D, Hoegh-Guldberg O, Dove S.  2015.  Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change. . PLoS ONE . 10(10):e0139223.   10.1371/journal.pone.0139223  
Kline, DI, Teneva L, Hauri C, Schneider K, Miard T, Chai A, Marker M, Dunbar R, Caldeira K, Lazar B.  2015.  Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies. PloS one. 10(6):e0127648.: Public Library of Science Abstract
Andersson, AJ, Kline DI, Edmunds PJ, Archer SD, Bednaršek N, Carpenter RC, Chadsey M, Goldstein P, Grottoli AG, Hurst TP.  2015.  Understanding ocean acidification impacts on organismal to ecological scales. Oceanography. 28(2):16-27. Abstract
Gonzalez-Rivero, M, Bongaerts P, Beijbom O, Pizarro O, Friedman A, Rodriguez-Ramirez A, Upcroft B, Laffoley D, Kline D, Bailhache C, Vevers R, Hoegh-Guldberg O.  2014.  The Catlin Seaview Survey - kilometre-scale seascape assessment, and monitoring of coral reef ecosystems. Aquatic Conservation-Marine and Freshwater Ecosystems. 24:184-198.   10.1002/aqc.2505   AbstractWebsite

Marine ecosystems provide critically important goods and services to society, and hence their accelerated degradation underpins an urgent need to take rapid, ambitious and informed decisions regarding their conservation and management.The capacity, however, to generate the detailed field data required to inform conservation planning at appropriate scales is limited by time and resource consuming methods for collecting and analysing field data at the large scales required.The Catlin Seaview Survey', described here, introduces a novel framework for large-scale monitoring of coral reefs using high-definition underwater imagery collected using customized underwater vehicles in combination with computer vision and machine learning. This enables quantitative and geo-referenced outputs of coral reef features such as habitat types, benthic composition, and structural complexity (rugosity) to be generated across multiple kilometre-scale transects with a spatial resolution ranging from 2 to 6m(2).The novel application of technology described here has enormous potential to contribute to our understanding of coral reefs and associated impacts by underpinning management decisions with kilometre-scale measurements of reef health.Imagery datasets from an initial survey of 500km of seascape are freely available through an online tool called the Catlin Global Reef Record. Outputs from the image analysis using the technologies described here will be updated on the online repository as work progresses on each dataset.Case studies illustrate the utility of outputs as well as their potential to link to information from remote sensing. The potential implications of the innovative technologies on marine resource management and conservation are also discussed, along with the accuracy and efficiency of the methodologies deployed.10.1002/(ISSN)1099-0755 Copyright (c) 2014 John Wiley & Sons, Ltd.

Silverman, J, Schneider K, Kline DI, Rivlin T, Rivlin A, Hamylton S, Lazar B, Erez J, Caldeira K.  2014.  Community calcification in Lizard Island, Great Barrier Reef: A 33 year perspective. Geochimica Et Cosmochimica Acta. 144:72-81.   10.1016/j.gca.2014.09.011   AbstractWebsite

Measurements of community calcification (G(net)) were made during September 2008 and October 2009 on a reef flat in Lizard Island, Great Barrier Reef, Australia, 33 years after the first measurements were made there by the LIMER expedition in 1975. In 2008 and 2009 we measured G(net) = 61 +/- 12 and 54 +/- 13 mmol CaCO3 m(-2).day(-1), respectively. These rates are 27-49% lower than those measured during the same season in 1975-76. These rates agree well with those estimated from the measured temperature and degree of aragonite saturation using a reef calcification rate equation developed from observations in a Red Sea coral reef. Community structure surveys across the Lizard Island reef flat during our study using the same methods employed in 1978 showed that live coral coverage had not changed significantly (similar to 8%). However, it should be noted that the uncertainty in the live coral coverage estimates in this study and in 1978 were fairly large and inherent to this methodology. Using the reef calcification rate equation while assuming that seawater above the reef was at equilibrium with atmospheric PCO2 and given that live coral cover had not changed G(net) should have declined by 30 +/- 8% since the LIMER study as indeed observed. We note, however, that the error in estimated G(net) decrease relative to the 1970's could be much larger due to the uncertainties in the coral coverage measurements. Nonetheless, the similarity between the predicted and the measured decrease in G(net) suggests that ocean acidification may be the primary cause for the lower CaCO3 precipitation rate on the Lizard Island reef flat. (C) 2014 Elsevier Ltd. All rights reserved.

Gattuso, JP, Kirkwood W, Barry JP, Cox E, Gazeau F, Hansson L, Hendriks I, Kline DI, Mahacek P, Martin S, McElhany P, Peltzer ET, Reeve J, Roberts D, Saderne V, Tait K, Widdicombe S, Brewer PG.  2014.  Free-ocean CO2 enrichment (FOCE) systems: present status and future developments. Biogeosciences. 11:4057-4075.   10.5194/bg-11-4057-2014   AbstractWebsite

Free-ocean CO2 enrichment (FOCE) systems are designed to assess the impact of ocean acidification on biological communities in situ for extended periods of time (weeks to months). They overcome some of the drawbacks of laboratory experiments and field observations by enabling (1) precise control of CO2 enrichment by monitoring pH as an offset of ambient pH, (2) consideration of indirect effects such as those mediated through interspecific relationships and food webs, and (3) relatively long experiments with intact communities. Bringing perturbation experiments from the laboratory to the field is, however, extremely challenging. The main goal of this paper is to provide guidelines on the general design, engineering, and sensor options required to conduct FOCE experiments. Another goal is to introduce xFOCE, a community-led initiative to promote awareness, provide resources for in situ perturbation experiments, and build a user community. Present and existing FOCE systems are briefly described and examples of data collected presented. Future developments are also addressed as it is anticipated that the next generation of FOCE systems will include, in addition to pH, options for oxygen and/or temperature control. FOCE systems should become an important experimental approach for projecting the future response of marine ecosystems to environmental change.

Neal, BP, Condit C, Liu G, dos Santos S, Kahru M, Mitchell BG, Kline DI.  2014.  When depth is no refuge: cumulative thermal stress increases with depth in Bocas del Toro, Panama. Coral Reefs. 33:193-205.   10.1007/s00338-013-1081-6   AbstractWebsite

Coral reefs are increasingly affected by high-temperature stress events and associated bleaching. Monitoring and predicting these events have largely utilized sea surface temperature data, due to the convenience of using large-scale remotely sensed satellite measurements. However, coral bleaching has been observed to vary in severity throughout the water column, and variations in coral thermal stress across depths have not yet been well investigated. In this study, in situ water temperature data from 1999 to 2011 from three depths were used to calculate thermal stress on a coral reef in Bahia Almirante, Bocas del Toro, Panama, which was compared to satellite surface temperature data and thermal stress calculations for the same area and time period from the National Oceanic and Atmospheric Administration Coral Reef Watch Satellite Bleaching Alert system. The results show similar total cumulative annual thermal stress for both the surface and depth-stratified data, but with a striking difference in the distribution of that stress among the depth strata during different high-temperature events, with the greatest thermal stress unusually recorded at the deepest measured depth during the most severe bleaching event in 2005. Temperature records indicate that a strong density-driven temperature inversion may have formed in this location in that year, contributing to the persistence and intensity of bleaching disturbance at depth. These results indicate that depth may not provide a stress refuge from high water temperature events in some situations, and in this case, the water properties at depth appear to have contributed to greater coral bleaching at depth compared to near-surface locations. This case study demonstrates the importance of incorporating depth-stratified temperature monitoring and small-scale oceanographic and hydrologic data for understanding and predicting local reef responses to elevated water temperature events.

Reymond, CE, Lloyd A, Kline DI, Dove SG, Pandolfi JM.  2013.  Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Global Change Biology. 19:291-302.   10.1111/gcb.12035   AbstractWebsite

The combination of global and local stressors is leading to a decline in coral reef health globally. In the case of eutrophication, increased concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) are largely attributed to local land use changes. From the global perspective, increased atmospheric CO2 levels are not only contributing to global warming but also ocean acidification (OA). Both eutrophication and OA have serious implications for calcium carbonate production and dissolution among calcifying organisms. In particular, benthic foraminifera precipitate the most soluble form of mineral calcium carbonate (high-Mg calcite), potentially making them more sensitive to dissolution. In this study, a manipulative orthogonal two-factor experiment was conducted to test the effects of dissolved inorganic nutrients and OA on the growth, respiration and photophysiology of the large photosymbiont-bearing benthic foraminifer, Marginopora rossi. This study found the growth rate of M. rossi was inhibited by the interaction of eutrophication and acidification. The relationship between M. rossi and its photosymbionts became destabilized due to the photosymbiont's release from nutrient limitation in the nitrate-enriched treatment, as shown by an increase in zooxanthellae cells per host surface area. Foraminifers from the OA treatments had an increased amount of Chl a per cell, suggesting a greater potential to harvest light energy, however, there was no net benefit to the foraminifer growth. Overall, this study demonstrates that the impacts of OA and eutrophication are dose dependent and interactive. This research indicates an OA threshold at pH 7.6, alone or in combination with eutrophication, will lead to a decline in M. rossi calcification. The decline in foraminifera calcification associated with pollution and OA will have broad ecological implications across their ubiquitous range and suggests that without mitigation it could have serious implications for the future of coral reefs.

Dove, SG, Kline DI, Pantos O, Angly FE, Tyson GW, Hoegh-Guldberg O.  2013.  Future reef decalcification under a business-as-usual CO2 emission scenario. Proceedings of the National Academy of Sciences. 110:15342-15347.   10.1073/pnas.1302701110   AbstractWebsite

Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century.

Connell, SD, Kroeker KJ, Fabricius KE, Kline DI, Russell BD.  2013.  The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philosophical Transactions of the Royal Society B-Biological Sciences. 368   10.1098/rstb.2012.0442   AbstractWebsite

Predictions concerning the consequences of the oceanic uptake of increasing atmospheric carbon dioxide (CO2) have been primarily occupied with the effects of ocean acidification on calcifying organisms, particularly those critical to the formation of habitats (e. g. coral reefs) or their maintenance (e. g. grazing echinoderms). This focus overlooks direct and indirect effects of CO2 on non-calcareous taxa that play critical roles in ecosystem shifts (e. g. competitors). We present the model that future atmospheric [CO2] may act as a resource for mat-forming algae, a diverse and widespread group known to reduce the resilience of kelp forests and coral reefs. We test this hypothesis by combining laboratory and field CO2 experiments and data from 'natural' volcanic CO2 vents. We show that mats have enhanced productivity in experiments and more expansive covers in situ under projected near-future CO2 conditions both in temperate and tropical conditions. The benefits of CO2 are likely to vary among species of producers, potentially leading to shifts in species dominance in a high CO2 world. We explore how ocean acidification combines with other environmental changes across a number of scales, and raise awareness of CO2 as a resource whose change in availability could have wide-ranging community consequences beyond its direct effects.

Nash, MC, Opdyke BN, Troitzsch U, Russell BD, Adey WH, Kato A, Diaz-Pulido G, Brent C, Gardner M, Prichard J, Kline DI.  2013.  Dolomite rich coral reef coralline algae resist dissolution in acidified conditions.. Nature Climate Change. 3:268-272.   10.1038/nclimate1760   Abstract

Coral reef ecosystems develop best in high-flow environments but their fragile frameworks are also vulnerable to high wave energy. Wave-resistant algal rims, predominantly made up of the crustose coralline algae (CCA) Porolithon onkodes and P. pachydermum1, 2, are therefore critical structural elements for the survival of many shallow coral reefs. Concerns are growing about the susceptibility of CCA to ocean acidification because CCA Mg-calcite skeletons are more susceptible to dissolution under low pH conditions than coral aragonite skeletons3. However, the recent discovery4 of dolomite (Mg0.5Ca0.5(CO3)), a stable carbonate5, in P. onkodes cells necessitates a reappraisal of the impacts of ocean acidification on these CCA. Here we show, using a dissolution experiment, that dried dolomite-rich CCA have 6–10 times lower rates of dissolution than predominantly Mg-calcite CCA in both high-CO2 (~ 700 ppm) and control (~ 380 ppm) environments, respectively. We reveal this stabilizing mechanism to be a combination of reduced porosity due to dolomite infilling and selective dissolution of other carbonate minerals. Physical break-up proceeds by dissolution of Mg-calcite walls until the dolomitized cell eventually drops out intact. Dolomite-rich CCA frameworks are common in shallow coral reefs globally and our results suggest that it is likely that they will continue to provide protection and stability for coral reef frameworks as CO2

Reyes-Nivia, C, Diaz-Pullido G, Kline D, Hoegh-Guldberg O, Dove S.  2013.  Ocean acidification and warming scenarios increase bioerosion of coral skeletons. Global Change Biology. 19:1919-1929.   10.1111/gcb.12158   Abstract

Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef-building corals, Porites cylindrica and Isopora cuneata, to present-day (Control: 400 μatm – 24 °C) and future pCO2–temperature scenarios projected for the end of the century (Medium: +230 μatm – +2 °C; High: +610 μatm – +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2–temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2–temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2–temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.

Kline, DI, Teneva L, Schneider K, Miard T, Chai A, Marker M, Headley K, Opdyke B, Nash M, Valetich M, Caves JK, Russell BD, Connell SD, Kirkwood BJ, Brewer P, Peltzer E, Silverman J, Caldeira K, Dunbar RB, Koseff JR, Monismith SG, Mitchell BG, Dove S, Hoegh-Guldberg O.  2012.  A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Scientific Reports. 2   10.1038/srep00413   AbstractWebsite

Ocean acidification poses multiple challenges for coral reefs on molecular to ecological scales, yet previous experimental studies of the impact of projected CO2 concentrations have mostly been done in aquarium systems with corals removed from their natural ecosystem and placed under artificial light and seawater conditions. The Coral-Proto Free Ocean Carbon Enrichment System (CP-FOCE) uses a network of sensors to monitor conditions within each flume and maintain experimental pH as an offset from environmental pH using feedback control on the injection of low pH seawater. Carbonate chemistry conditions maintained in the -0.06 and -0.22 pH offset treatments were significantly different than environmental conditions. The results from this short-term experiment suggest that the CP-FOCE is an important new experimental system to study in situ impacts of ocean acidification on coral reef ecosystems.

Diaz-Pulido, G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O.  2012.  Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. Journal of Phycology. 48:32-39.   10.1111/j.1529-8817.2011.01084.x   AbstractWebsite

Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2). Little is known, however, about the combined impacts of increased pCO2, ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from <1% to 9% under high CO2 (from 400 to 1,100 ppm) and exacerbated to 15% under warming conditions (from 26 degrees C to 29 degrees C). Furthermore, the effect of pCO2 on skeletal dissolution strongly depended on temperature. Dissolution of P. onkodes only occurred in the high-pCO2 treatment and was greater in the warm treatment. Enhanced skeletal dissolution was also associated with a significant increase in the abundance of endolithic algae. Our results demonstrate that P. onkodes is particularly sensitive to ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems.

Silverman, J, Kline DI, Johnson L, Rivlin T, Schneider K, Erez J, Lazar B, Caldeira K.  2012.  Carbon turnover rates in the One Tree Island reef: A 40-year perspective. Journal of Geophysical Research-Biogeosciences. 117   10.1029/2012jg001974   AbstractWebsite

During November-December 2009 community rates of gross photosynthesis (P-g), respiration (R) and net calcification (G(net)) were estimated from low-tide slack water measurements of dissolved oxygen, dissolved inorganic carbon and total alkalinity at the historical station DK13 One Tree Island reef, Great Barrier Reef, Australia. Compared to measurements made during the 1960s-1970s at DK13 in the same season, P-g increased from 833 to 914 mmol O-2 center dot m(-2).d(-1) and P-g:R increased from 1.14 to 1.30, indicating that the reef has become more autotrophic. In contrast, G(net) decreased from 133 mmol C.m(-2).d(-1) to 74 +/- 24 mmol C.m(-2).d(-1). This decrease stems primarily from the threefold increase in nighttime CaCO3 dissolution from -2.5 mmol.m(-2).h(-1) to -7.5 mmol.m(-2).h(-1). Comparison of the benthic community survey results from DK13 and its vicinity conducted during this study and in studies from the 1970s, 1980s and 1990s suggest that there have been no significant changes in the live coral coverage during the past 40 years. The reduced G(net) most likely reflects the almost threefold increase in dissolution rates, possibly resulting from increased bioerosion due to changes in the biota (e.g., sea cucumbers, boring organisms) and/or from greater chemical dissolution produced by changing abiotic conditions over the past 40 years associated with climate change, such as increased temperatures and ocean acidification. However, at this stage of research on One Tree Island the effects of these changes are not entirely understood.

Kaniewska, P, Campbell PR, Kline DI, Rodriguez-Lanetty M, Miller DJ, Dove S, Hoegh-Guldberg O.  2012.  Major cellular and physiological impacts of ocean acidification on a reef building coral. Plos One. 7   10.1371/journal.pone.0034659   AbstractWebsite

As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.

Beijbom, O, Edmunds P, Kline DI, Mitchell BG, Kriegman D.  2012.  Automated annotation of coral reef survey images. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Fang, JKH, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S.  2012.  Methods to quantify components of the excavating sponge Cliona orientalis Thiele, 1900. Marine Ecology. :n/a-n/a.   10.1111/maec.12005   AbstractWebsite

This study applied the loss after combustion (LAC) method and the acid decalcification (ADC) method to quantify different components of an excavating sponge. Samples of dried coral skeleton of Favia sp. invaded by the Indo-Pacific excavating sponge Cliona orientalis Thiele, 1900 were used. The sponge tissue penetrated the 12-mm-thick samples to approximately 10 mm. The average proportional weight of organic matter, siliceous spicules, calcareous substrate and salts in the entire samples was found to be respectively 2.5%, 4.4%, 90.5% and 2.5% of dry weight applying the LAC method, and 2.9%, 5.9%, 89.0% and 2.3% of dry weight applying the ADC method. Respective volumetric proportions of the organic matter, spicules, substrate and salts were then calculated to be 6.4%, 5.5%, 85.2% and 3.0% of volume with the LAC method, and 7.4%, 7.2%, 82.7% and 2.7% of volume with the ADC method. The LAC method showed low variability of data and is simple and fast and therefore is recommended. The ADC method generated very similar results to the LAC method. However, due to the handling involved in the ADC method, more than half of the spicules may be lost and the method is therefore not recommended unless careful data corrections are considered. In addition, the buoyant weight method was used to quantify actual substrate weight in the fresh sponge-substrate samples. This method was found to be at least 97% effective, revealing that buoyant weights can potentially be used to quantify bioerosion rates of excavating sponges. To our knowledge, this is the first study to systemically quantify organic and inorganic components of an excavating sponge and its calcareous substrate, providing improved standard methods for future studies.