Export 2 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Ralph, FM, Neiman PJ, Wick GA, Gutman SI, Dettinger MD, Cayan DR, White AB.  2006.  Flooding on California's Russian River: Role of atmospheric rivers. Geophysical Research Letters. 33   10.1029/2006gl026689   AbstractWebsite

[1] Experimental observations collected during meteorological field studies conducted by the National Oceanic and Atmospheric Administration near the Russian River of coastal northern California are combined with SSM/I satellite observations offshore to examine the role of landfalling atmospheric rivers in the creation of flooding. While recent studies have documented the characteristics and importance of narrow regions of strong meridional water vapor transport over the eastern Pacific Ocean (recently referred to as atmospheric rivers), this study describes their impact when they strike the U. S. West Coast. A detailed case study is presented, along with an assessment of all 7 floods on the Russian River since the experimental data were first available in October 1997. In all 7 floods, atmospheric river conditions were present and caused heavy rainfall through orographic precipitation. Not only do atmospheric rivers play a crucial role in the global water budget, they can also lead to heavy coastal rainfall and flooding, and thus represent a key phenomenon linking weather and climate.

Cayan, DR, Das T, Pierce DW, Barnett TP, Tyree M, Gershunov A.  2010.  Future dryness in the southwest US and the hydrology of the early 21st century drought. Proceedings of the National Academy of Sciences of the United States of America. 107:21271-21276.   10.1073/pnas.0912391107   AbstractWebsite

Recently the Southwest has experienced a spate of dryness, which presents a challenge to the sustainability of current water use by human and natural systems in the region. In the Colorado River Basin, the early 21st century drought has been the most extreme in over a century of Colorado River flows, and might occur in any given century with probability of only 60%. However, hydrological model runs from downscaled Intergovernmental Panel on Climate Change Fourth Assessment climate change simulations suggest that the region is likely to become drier and experience more severe droughts than this. In the latter half of the 21st century the models produced considerably greater drought activity, particularly in the Colorado River Basin, as judged from soil moisture anomalies and other hydrological measures. As in the historical record, most of the simulated extreme droughts build up and persist over many years. Durations of depleted soil moisture over the historical record ranged from 4 to 10 years, but in the 21st century simulations, some of the dry events persisted for 12 years or more. Summers during the observed early 21st century drought were remarkably warm, a feature also evident in many simulated droughts of the 21st century. These severe future droughts are aggravated by enhanced, globally warmed temperatures that reduce spring snowpack and late spring and summer soil moisture. As the climate continues to warm and soil moisture deficits accumulate beyond historical levels, the model simulations suggest that sustaining water supplies in parts of the Southwest will be a challenge.