Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Maurer, EP, Brekke L, Pruitt T, Thrasher B, Long J, Duffy P, Dettinger M, Cayan D, Arnold J.  2014.  An enhanced archive facilitating climate impacts and adaptation analysis. Bulletin of the American Meteorological Society. 95:1011-+.   10.1175/bams-d-13-00126.1   AbstractWebsite

We describe the expansion of a publicly available archive of downscaled climate and hydrology projections for the United States. Those studying or planning to adapt to future climate impacts demand downscaled climate model output for local or regional use. The archive we describe attempts to fulfill this need by providing data in several formats, selectable to meet user needs. Our archive has served as a resource for climate impacts modelers, water managers, educators, and others. Over 1,400 individuals have transferred more than 50 TB of data from the archive. In response to user demands, the archive has expanded from monthly downscaled data to include daily data to facilitate investigations of phenomena sensitive to daily to monthly temperature and precipitation, including extremes in these quantities. New developments include downscaled output from the new Coupled Model Intercomparison Project phase 5 (CMIP5) climate model simulations at both the monthly and daily time scales, as well as simulations of surface hydrological variables. The web interface allows the extraction of individual projections or ensemble statistics for user-defined regions, promoting the rapid assessment of model consensus and uncertainty for future projections of precipitation, temperature, and hydrology. The archive is accessible online (

Pierce, DW, Das T, Cayan DR, Maurer EP, Miller NL, Bao Y, Kanamitsu M, Yoshimura K, Snyder MA, Sloan LC, Franco G, Tyree M.  2013.  Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dynamics. 40:839-856.   10.1007/s00382-012-1337-9   AbstractWebsite

Sixteen global general circulation models were used to develop probabilistic projections of temperature (T) and precipitation (P) changes over California by the 2060s. The global models were downscaled with two statistical techniques and three nested dynamical regional climate models, although not all global models were downscaled with all techniques. Both monthly and daily timescale changes in T and P are addressed, the latter being important for a range of applications in energy use, water management, and agriculture. The T changes tend to agree more across downscaling techniques than the P changes. Year-to-year natural internal climate variability is roughly of similar magnitude to the projected T changes. In the monthly average, July temperatures shift enough that that the hottest July found in any simulation over the historical period becomes a modestly cool July in the future period. Januarys as cold as any found in the historical period are still found in the 2060s, but the median and maximum monthly average temperatures increase notably. Annual and seasonal P changes are small compared to interannual or intermodel variability. However, the annual change is composed of seasonally varying changes that are themselves much larger, but tend to cancel in the annual mean. Winters show modestly wetter conditions in the North of the state, while spring and autumn show less precipitation. The dynamical downscaling techniques project increasing precipitation in the Southeastern part of the state, which is influenced by the North American monsoon, a feature that is not captured by the statistical downscaling.

Bromirski, PD, Cayan DR, Helly J, Wittmann P.  2013.  Wave power variability and trends across the North Pacific. Journal of Geophysical Research-Oceans. 118:6329-6348.   10.1002/2013jc009189   AbstractWebsite

Multiyear climate variations influence North Pacific storm intensity and resultant variations in wave energy levels. The timing of these decadal fluctuations and strong El Nino's have had a strong influence on long-term trends. Here we investigate variations in the North Pacific wave power, P-W, determined from WAVEWATCH III (WW3) wave model significant wave height, Hs, and peak period data forced by NRA-1 winds spanning the 1948-2008 epoch. Over the entire hindcast, upward trends in Hs and P-W, especially in winter, are observed over much of the North Pacific, strongly influenced by an apparent storm intensification after the mid-1970s regime shift. Heightened P-W is concentrated in particular regions of the basin, and is associated with increased wave activity during the warm phase of the Pacific Decadal Oscillation (PDO). Wave power events, P-E, defined as episodes when Hs exceeded the 90th percentile threshold for at least 12 h, exhibit significant upward trends along much of the U.S. Pacific coast during winter months. Importantly, the hindcast exhibits a recent decrease in P-W across much of the North Pacific, in contrast to the long-term increase of P-W and Hs. This recent decrease is associated with the prevalent PDO cool phase that developed after the late 1990s. Variability and intensification of coastal P-W and P-E have important practical implications for shoreline and beach erosion, coastal wetlands inundation, storm-surge flooding, and coastal planning. These considerations will become increasingly important as sea level rises.

Hanson, RT, Flint LE, Flint AL, Dettinger MD, Faunt CC, Cayan D, Schmid W.  2012.  A method for physically based model analysis of conjunctive use in response to potential climate changes. Water Resources Research. 48   10.1029/2011wr010774   AbstractWebsite

Potential climate change effects on aspects of conjunctive management of water resources can be evaluated by linking climate models with fully integrated groundwater-surface water models. The objective of this study is to develop a modeling system that links global climate models with regional hydrologic models, using the California Central Valley as a case study. The new method is a supply and demand modeling framework that can be used to simulate and analyze potential climate change and conjunctive use. Supply-constrained and demand-driven linkages in the water system in the Central Valley are represented with the linked climate models, precipitation-runoff models, agricultural and native vegetation water use, and hydrologic flow models to demonstrate the feasibility of this method. Simulated precipitation and temperature were used from the GFDL-A2 climate change scenario through the 21st century to drive a regional water balance mountain hydrologic watershed model (MHWM) for the surrounding watersheds in combination with a regional integrated hydrologic model of the Central Valley (CVHM). Application of this method demonstrates the potential transition from predominantly surface water to groundwater supply for agriculture with secondary effects that may limit this transition of conjunctive use. The particular scenario considered includes intermittent climatic droughts in the first half of the 21st century followed by severe persistent droughts in the second half of the 21st century. These climatic droughts do not yield a valley-wide operational drought but do cause reduced surface water deliveries and increased groundwater abstractions that may cause additional land subsidence, reduced water for riparian habitat, or changes in flows at the Sacramento-San Joaquin River Delta. The method developed here can be used to explore conjunctive use adaptation options and hydrologic risk assessments in regional hydrologic systems throughout the world.