Publications

Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Sumargo, E, Cayan DR.  2018.  The influence of cloudiness on hydrologic fluctuations in the mountains of the western United States. Water Resources Research. 54:8478-8499.   10.1029/2018wr022687   AbstractWebsite

This study investigates snowmelt and streamflow responses to cloudiness variability across the mountainous parts of the western United States. Twenty years (1996-2015) of Geostationary Operational Environmental Satellite-derived cloud cover indices (CC) with 4-km spatial and daily temporal resolutions are used as a proxy for cloudiness. The primary driver of nonseasonal fluctuations in daily mean solar insolation is the fluctuating cloudiness. We find that CC fluctuations are related to snowmelt and snow-fed streamflow fluctuations, to some extent (correlations of <0.5). Multivariate linear regression models of daily snowmelt (MELT) and streamflow (AQ) variations are constructed for each month from February to July, when snowmelt is most active. Predictors include CC from five antecedent days up to the current day. The CC-MELT and CC-AQ associations vary with time and location. The results show the dominance of negative correlations between CC and MELT, exemplifying the cloud-shading (or clear-sky) effect on snowmelt. The magnitude of the CC-MELT association (R-2) amounts to 5-61%, typically peaking in May. These associations fade earlier in summer during dry years than wet years, indicating the differing responses of thicker versus thinner snowpack. The CC-AQ association displays a less consistent pattern, with R-2 amounting to 2-47%. Nevertheless, MELT and AQ fluctuations exhibit spatially extensive patterns of correlations with daily cloudiness anomalies, indicating that the effects of cloudiness often operate over regional spatial scales. Plain Language Summary Much of the water supply in the western United States originates as mountain streams, which derive much of their water from snowmelt. The primary driver of mountain snowmelt is solar energy, and cloud cover regulates how much solar energy can reach the snow surface. Despite this fact, how snowmelt and streamflow respond to cloud cover (or its absence) has not been thoroughly studied. In our study, we describe snowmelt and streamflow responses to cloud cover using satellite images of cloud cover and surface records of snowmelt and streamflow. We find significant snowmelt and daily streamflow rate responses to cloud cover. Importantly, during the peak snowmelt season, snowmelt and streamflow decrease when cloud cover increases, and vice versa, confirming the cloud-shading effect on the snow surface. However, this cause-and-effect process is not so simple. We also find that cloud cover (or its absence) in the previous few days can affect how much snow melts and the streamflow rate is in a day. Snowmelt and streamflow responses to cloud cover are stronger, albeit shorter-lived, in dry years than in wet years, highlighting the relative importance of cloud cover in drier years.

Knowles, N, Cronkite-Ratcliff C, Pierce DW, Cayan DR.  2018.  Responses of unimpaired flows, storage, and managed flows to scenarios of climate change in the San Francisco Bay-Delta Watershed. Water Resources Research. 54:7631-7650.   10.1029/2018wr022852   AbstractWebsite

Projections of meteorology downscaled from global climate model runs were used to drive a model of unimpaired hydrology of the Sacramento/San Joaquin watershed, which in turn drove models of operational responses and managed flows. Twenty daily climate change scenarios for water years 1980-2099 were evaluated with the goal of producing inflow boundary conditions for a watershed sediment model and for a hydrodynamical model of the San Francisco Bay-Delta estuary. The resulting time series of meteorology, snowpack, unimpaired flow, reservoir storage, and managed flow were analyzed for century-scale trends. In the Sacramento basin, which dominates Bay-Delta inflows, all 20 scenarios portrayed warming trends (with a mean of 4.1 degrees C) and most had precipitation increases (with a mean increase of 9%). Sacramento basin snowpack water equivalent declined sharply (by 89%), which was associated with a major shift toward earlier unimpaired runoff timing (33% more flow arriving prior to 1 April). Sacramento basin reservoirs showed large declines in end-of-September storage. Water-year averaged outflows increased for most scenarios for both unimpaired and impaired flows, and frequency of extremely high daily unimpaired and impaired flows increased (increases of 175% and 170%, respectively). Managed Delta inflows were projected to experience large increases in the wet season and declines in the dry season. Changes in management strategy and infrastructure can mitigate some of these changes, though to what degree is uncertain.

2013
White, AB, Anderson ML, Dettinger MD, Ralph FM, Hinojosa A, Cayan DR, Hartman RK, Reynolds DW, Johnson LE, Schneider TL, Cifelli R, Toth Z, Gutman SI, King CW, Gehrke F, Johnston PE, Walls C, Mann D, Gottas DJ, Coleman T.  2013.  A twenty-first-century California observing network for monitoring extreme weather events. Journal of Atmospheric and Oceanic Technology. 30:1585-1603.   10.1175/jtech-d-12-00217.1   AbstractWebsite

During Northern Hemisphere winters, the West Coast of North America is battered by extratropical storms. The impact of these storms is of paramount concern to California, where aging water supply and flood protection infrastructures are challenged by increased standards for urban flood protection, an unusually variable weather regime, and projections of climate change. Additionally, there are inherent conflicts between releasing water to provide flood protection and storing water to meet requirements for the water supply, water quality, hydropower generation, water temperature and flow for at-risk species, and recreation. To improve reservoir management and meet the increasing demands on water, improved forecasts of precipitation, especially during extreme events, are required. Here, the authors describe how California is addressing their most important and costliest environmental issue-water management-in part, by installing a state-of-the-art observing system to better track the area's most severe wintertime storms.

2012
Hanson, RT, Flint LE, Flint AL, Dettinger MD, Faunt CC, Cayan D, Schmid W.  2012.  A method for physically based model analysis of conjunctive use in response to potential climate changes. Water Resources Research. 48   10.1029/2011wr010774   AbstractWebsite

Potential climate change effects on aspects of conjunctive management of water resources can be evaluated by linking climate models with fully integrated groundwater-surface water models. The objective of this study is to develop a modeling system that links global climate models with regional hydrologic models, using the California Central Valley as a case study. The new method is a supply and demand modeling framework that can be used to simulate and analyze potential climate change and conjunctive use. Supply-constrained and demand-driven linkages in the water system in the Central Valley are represented with the linked climate models, precipitation-runoff models, agricultural and native vegetation water use, and hydrologic flow models to demonstrate the feasibility of this method. Simulated precipitation and temperature were used from the GFDL-A2 climate change scenario through the 21st century to drive a regional water balance mountain hydrologic watershed model (MHWM) for the surrounding watersheds in combination with a regional integrated hydrologic model of the Central Valley (CVHM). Application of this method demonstrates the potential transition from predominantly surface water to groundwater supply for agriculture with secondary effects that may limit this transition of conjunctive use. The particular scenario considered includes intermittent climatic droughts in the first half of the 21st century followed by severe persistent droughts in the second half of the 21st century. These climatic droughts do not yield a valley-wide operational drought but do cause reduced surface water deliveries and increased groundwater abstractions that may cause additional land subsidence, reduced water for riparian habitat, or changes in flows at the Sacramento-San Joaquin River Delta. The method developed here can be used to explore conjunctive use adaptation options and hydrologic risk assessments in regional hydrologic systems throughout the world.

2011
Franco, G, Cayan DR, Moser S, Hanemann M, Jones MA.  2011.  Second California Assessment: integrated climate change impacts assessment of natural and managed systems. Climatic Change. 109:1-19.   10.1007/s10584-011-0318-z   AbstractWebsite

Since 2006 the scientific community in California, in cooperation with resource managers, has been conducting periodic statewide studies about the potential impacts of climate change on natural and managed systems. This Special Issue is a compilation of revised papers that originate from the most recent assessment that concluded in 2009. As with the 2006 studies that influenced the passage of California's landmark Global Warming Solutions Act (AB32), these papers have informed policy formulation at the state level, helping bring climate adaptation as a complementary measure to mitigation. We provide here a brief introduction to the papers included in this Special Issue focusing on how they are coordinated and support each other. We describe the common set of downscaled climate and sea-level rise scenarios used in this assessment that came from six different global climate models (GCMs) run under two greenhouse gas emissions scenarios: B1 (low emissions) and A2 (a medium-high emissions). Recommendations for future state assessments, some of which are being implemented in an on-going new assessment that will be completed in 2012, are offered.

2010
Cayan, DR, Das T, Pierce DW, Barnett TP, Tyree M, Gershunov A.  2010.  Future dryness in the southwest US and the hydrology of the early 21st century drought. Proceedings of the National Academy of Sciences of the United States of America. 107:21271-21276.   10.1073/pnas.0912391107   AbstractWebsite

Recently the Southwest has experienced a spate of dryness, which presents a challenge to the sustainability of current water use by human and natural systems in the region. In the Colorado River Basin, the early 21st century drought has been the most extreme in over a century of Colorado River flows, and might occur in any given century with probability of only 60%. However, hydrological model runs from downscaled Intergovernmental Panel on Climate Change Fourth Assessment climate change simulations suggest that the region is likely to become drier and experience more severe droughts than this. In the latter half of the 21st century the models produced considerably greater drought activity, particularly in the Colorado River Basin, as judged from soil moisture anomalies and other hydrological measures. As in the historical record, most of the simulated extreme droughts build up and persist over many years. Durations of depleted soil moisture over the historical record ranged from 4 to 10 years, but in the 21st century simulations, some of the dry events persisted for 12 years or more. Summers during the observed early 21st century drought were remarkably warm, a feature also evident in many simulated droughts of the 21st century. These severe future droughts are aggravated by enhanced, globally warmed temperatures that reduce spring snowpack and late spring and summer soil moisture. As the climate continues to warm and soil moisture deficits accumulate beyond historical levels, the model simulations suggest that sustaining water supplies in parts of the Southwest will be a challenge.

1999
Pandey, GR, Cayan DR, Georgakakos KP.  1999.  Precipitation structure in the Sierra Nevada of California during winter. Journal of Geophysical Research-Atmospheres. 104:12019-12030.   10.1029/1999jd900103   AbstractWebsite

Influences of upper air characteristics along the coast of California upon wintertime (November-April) precipitation in the Sierra Nevada are investigated. Precipitation events in the Sierra Nevada region occur mostly during wintertime, irrespective of station location (leeside or windside) and elevation. Most precipitation episodes in the region are associated with moist southwesterly winds (coming from the southwest direction) and also tend to occur when the 700-mbar temperature at the upwind direction is close to -2 degrees C. This favored wind direction and temperature signify the importance of both moisture transport and orographic lifting in augmenting precipitation in the region. By utilizing the observed dependency of the precipitation upon the upper air conditions, a linear model is formulated to quantify the precipitation observed at different sites as a function of moisture transport. The skill of the model increases with timescale of aggregation, reaching more than 50% variance explained at an aggregation period of 5-7 days. This indicates that upstream air moisture transport can be used to estimate the precipitation totals in the Sierra Nevada region.