Publications

Export 28 results:
Sort by: Author Title Type [ Year  (Desc)]
1996
Cayan, DR.  1996.  Interannual climate variability and snowpack in the western United States. Journal of Climate. 9:928-948.   10.1175/1520-0442(1996)009<0928:icvasi>2.0.co;2   AbstractWebsite

An important part of the water supply in the western United States is derived from runoff fed by mountain snowmelt. Snow accumulation responds to both precipitation and temperature variations, and forms an interesting climatic index, since it integrates these influences over the entire late fall-spring period. Here, effects of cool season climate variability upon snow water equivalent (SWE) over the western part of the conterminous United States are examined. The focus is on measurements on/around 1 April, when snow accumulation is typically greatest. The primary data, from a network of mountainous snow courses, provides a good description of interannual fluctuations in snow accumulations, since many snow courses have records of five decades or more. For any given year, the spring SWE anomaly at a particular snow course is likely to be 25%-60% of its long-term average. Five separate regions of anomalous SWE variability are distinguished, using a rotated principal components analysis. Although effects vary with region and with elevation, in general, the anomalous winter precipitation has the strongest influence on spring SWE fluctuations. Anomalous temperature has a weaker effect overall, but it has great influence in lower elevations such as in the coastal Northwest, and during spring in higher elevations. The regional snow anomaly patterns are associated with precipitation and temperature anomalies in winter and early spring. Patterns of the precipitation, temperature, and snow anomalies extend over broad regional areas, much larger than individual watersheds. These surface anomalies are organized by the atmospheric circulation, with primary anomaly centers over the North Pacific Ocean as well as over western North America. For most of the regions, anomalously low SWE is associated with a winter circulation resembling the PNA pattern. With a strong low in the central North Pacific and high pressure over the Pacific Northwest, this pattern diverts North Pacific storms northward, away from the region. Both warm and cool phases of El Nino-Southern Oscillation tend to produce regional pattens with out-of-phase SWE anomalies in the Northwest and the Southwest.

1994
Chen, SC, Cayan DR.  1994.  Low-frequency aspects of the large-scale circulation and West Coast United States temperature/precipitation fluctuations in a simplified general circulation model. Journal of Climate. 7:1668-1683.   10.1175/1520-0442(1994)007<1668:lfaotl>2.0.co;2   AbstractWebsite

Behavior of regional precipitation and temperature over the West Coast of the United States was examined in a long perpetual winter simulation from a simplified global general circulation model. The model, a simplified version of the U.S. National Weather Service global operational forecast model, was run over a series of 568 winters, complete with geopotential, precipitation, and near-surface temperature. In spite of the fixed climatological boundary conditions, the simulated winter-mean precipitation and temperature anomalies have a fairly realistic low-frequency regional variability. Both synoptic-scale events and seasonal average behavior are produced quite realistically by the model. Like observations, the regional surface variations can be related to the large-scale low-frequency circulation. Four regional temperature/precipitation extremes-namely, warm/dry, cool/wet, cool/dry, and warm/wet-can be identified from the simulated winter-mean time series over the West Coast. Associated with these four regional extremes, model Northern Hemisphere 500-mb height composites exhibit distinct planetary-scale circulation patterns. An empirical orthogonal function analysis further reveals that the first and third modes of the 500-mb height anomalies are primary contributors to these four regional extremes. The first mode largely governs the regional temperature variation, whereas the third mode largely determines the precipitation variation.

Ely, LL, Enzel Y, Cayan DR.  1994.  Anomalous North Pacific atmospheric circulation and large winter floods in the Southwestern United States. Journal of Climate. 7:977-987.   10.1175/1520-0442(1994)007<0977:anpaca>2.0.co;2   AbstractWebsite

Specific anomalous atmospheric circulation conditions over the North Pacific are conducive to the occurrence of the largest winter floods (greater-than-or-equal-to 10-yr return period) on rivers in six hydroclimatic subregions of Arizona and southern Utah, Nevada, and California. Composite maps of anomalies in daily 700-mb heights indicate that floods in all of the subregions are associated with a low pressure anomaly off the California coast and a high-pressure anomaly in the vicinity of either Alaska or the Aleutian Islands. Of these two major circulation features, the presence of the low is the controlling factor in determining whether large floods will occur. Shifts in the locations of the low and high pressure anomalies over the North Pacific appear to control which subregions experience floods, with high-elevation topographic features and proximity to air masses forming a major influence over the specific atmospheric circulation conditions that generate large floods in each hydroclimatic region. Concerning the interannual variability of flooding in the Southwest, there is an increased frequency of large winter floods during multiple-year periods dominated by negative SOI and a virtual absence of large floods during the intervening periods. This suggests that global-scale climatic anomalies exert a strong influence on the occurrence of severe regional winter floods.