Export 11 results:
Sort by: Author Title Type [ Year  (Desc)]
Clemesha, RES, Gershunov A, Iacobellis SF, Cayan DR.  2017.  Daily variability of California coastal low cloudiness: A balancing act between stability and subsidence. Geophysical Research Letters. 44:3330-3338.   10.1002/2017gl073075   AbstractWebsite

We examine mechanisms driving daily variability of summer coastal low cloudiness (CLC) along the California coast. Daily CLC is derived from a satellite record from 1996 to 2014. Atmospheric rather than oceanic processes are mostly responsible for daily fluctuations in vertical stability that dictate short-period variation in CLC structure. Daily CLC anomalies are most strongly correlated to lower tropospheric stability anomalies to the north. The spatially offset nature of the cloud-stability relationship is a result of the balancing act that affects low cloudiness wherein subsidence drives increased stability, which promotes cloudiness, but too much subsidence limits cloudiness. Lay explanations claim that high inland temperatures pull in CLC, but such a process presumably would have the high temperatures directly inland. Rather, we find that the spatially offset associations between CLC and atmospheric circulation result in positive correlations between CLC and inland surface temperature anomalies to the north.

Clemesha, RES, Gershunov A, Iacobellis SF, Williams AP, Cayan DR.  2016.  The northward march of summer low cloudiness along the California coast. Geophysical Research Letters. 43:1287-1295.   10.1002/2015gl067081   AbstractWebsite

A new satellite-derived low cloud retrieval reveals rich spatial texture and coherent space-time propagation in summertime California coastal low cloudiness (CLC). Throughout the region, CLC is greatest during May-September but has considerable monthly variability within this summer season. On average, June is cloudiest along the coast of southern California and northern Baja, Mexico, while July is cloudiest along northern California's coast. Over the course of the summer, the core of peak CLC migrates northward along coastal California, reaching its northernmost extent in late July/early August, then recedes while weakening. The timing and movement of the CLC climatological structure is related to the summer evolution of lower tropospheric stability and both its component parts, sea surface temperature and potential temperature at 700hPa. The roughly coincident seasonal timing of peak CLC with peak summertime temperatures translates into the strongest heat-modulating capacity of CLC along California's north coast.

White, WB, Cayan DR, Niiler PP, Moisan J, Lagerloef G, Bonjean F, Legler D.  2005.  The seasonal cycle of diabatic heat storage in the Pacific Ocean. Progress in Oceanography. 64:1-29.   10.1016/j.pocean.2004.06.012   AbstractWebsite

This study quantifies uncertainties in closing the seasonal cycle of diabatic heat storage (DHS) over the Pacific Ocean from 20 degrees S to 60 degrees N through the synthesis of World Ocean Circulation Experiment (WOCE) reanalysis products from 1993 to 1999. These products are DHS from Scripps Institution of Oceanography (SIO); near-surface geostrophic and Ekman currents from Earth and Space Research (ESR); and air-sea heat fluxes from Comprehensive Ocean-Atmosphere Data Set (COADS), National Centers for Environmental Prediction (NCEP), and European Center for Mid-Range Weather Forecasts (ECMWF). With these products, we compute residual heat budget components by differencing long-term monthly means from the long-term annual mean. This allows the seasonal cycle of the DHS tendency to be modeled. Everywhere latent heat flux residuals dominate sensible heat flux residuals, shortwave heat flux residuals dominate longwave heat flux residuals, and residual Ekman heat advection dominates residual geostrophic heat advection, with residual dissipation significant only in the Kuroshio-Oyashio current extension. The root-mean-square (RMS) of the differences between observed and model residual DHS tendencies (averaged over 10 degrees latitude-by-20 degrees longitude boxes) is < 20 W m(-2) in the interior ocean and < 100 W m(-2) in the Kuroshio-Oyashio current extension. This reveals that the residual DHS tendency is driven everywhere by some mix of residual latent heat flux, shortwave heat flux, and Ekman heat advection. Suppressing bias errors in residual air-sea turbulent heat fluxes and Ekman heat advection through minimization of the RMS differences reduces the latter to < 10 W m(-2) over the interior ocean and < 25 W m(-2) in the Kuroshio-Oyashio current extension. This reveals air-sea temperature and specific humidity differences from in situ surface marine weather observations to be a principal source of bias error, overestimated over most of ocean but underestimated near the Intertropical Convergence Zone. (c) 2005 Elsevier Ltd. All rights reserved.

White, WB, Cayan DR, Dettinger MD, Auad G.  2001.  Sources of global warming in upper ocean temperature during El Nino. Journal of Geophysical Research-Oceans. 106:4349-4367.   10.1029/1999jc000130   AbstractWebsite

Global average sea surface temperature (SST) from 40 degreesS to 60 degreesN fluctuates +/-0.3 degreesC on interannual period scales, with global warming (cooling) during El Nino (La Nina). About 90% of the global warming during El Nino occurs in the tropical global ocean from 20 degreesS to 20 degreesN, half because of large SST anomalies in the tropical Pacific associated with El Nino and the other half because of warm SST anomalies occurring over similar to 80% of the tropical global ocean. From examination of National Centers for Environmental Prediction [Kalnay et al., 1996] and Comprehensive Ocean-Atmosphere Data Set [Woodruff et al., 1993] reanalyses, tropical global warming during El Nino is associated with higher troposphere moisture content and cloud cover, with reduced trade wind intensity occurring during the onset phase of EI Nino. During this onset phase the tropical global average diabatic heat storage tendency in the layer above the main pycnocline is 1-3 Wm(-2) above normal. Its principal source is a reduction in the poleward Ekman heat flux out of the tropical ocean of 2-5 Wm(-2). Subsequently, peak tropical global warming during El Nino is dissipated by an increase in the flux of latent heat to the troposphere of 2-5 W m(-2), with reduced shortwave and longwave radiative fluxes in response to increased cloud cover tending to cancel each other. In the extratropical global ocean the reduction in poleward Ekman heat flux out of the tropics during the onset of El Nino tends to be balanced by reduction in the flux of latent heat to the troposphere. Thus global warming and cooling during Earth's internal mode of interannual climate variability arise from fluctuations in the global hydrological balance, not the global radiation balance. Since it occurs in the absence of extraterrestrial and anthropogenic forcing, global warming on decadal, interdecadal, and centennial period scales may also occur in association with Earth's internal modes of climate variability on those scales.

Cayan, DR, Redmond KT, Riddle LG.  1999.  ENSO and hydrologic extremes in the western United States. Journal of Climate. 12:2881-2893.   10.1175/1520-0442(1999)012<2881:eaheit>;2   AbstractWebsite

Frequency distributions of daily precipitation in winter and daily stream flow from late winter to early summer, at several hundred sites in the western United States, exhibit strong and systematic responses to the two phases of ENSO. Most of the stream flows considered are driven by snowmelt. The Southern Oscillation index (SOI) is used as the ENSO phase indicator. Both modest (median) and larger (90th percentile) events were considered. In years with negative SOI values (El Nino), days with high daily precipitation and stream flow are more frequent than average over the Southwest and less frequent over the Northwest. During years with positive SOI values (La Nino), a nearly opposite pattern is seen. A more pronounced increase is seen in the number of days exceeding climatological 90th percentile values than in the number exceeding climatological 50th percentile values, for both precipitation and stream flow. Stream flow responses to ENSO extremes are accentuated over precipitation responses. Evidence suggests that the mechanism for this amplification involves ENSO-phase differences in the persistence and duration of wet episodes, affecting the efficiency of the process by which precipitation is converted to runoff. The SOI leads the precipitation events by several months,and hydrologic lags (mostly through snowmelt) delay the stream flow response by several more months. The combined 6-12-month predictive aspect of this relationship should be of significant benefit in responding to flood (or drought) risk and in improving overall water management in the western states.

White, WB, Cayan DR.  1998.  Quasi-periodicity and global symmetries in interdecadal upper ocean temperature variability. Journal of Geophysical Research-Oceans. 103:21335-21354.   10.1029/98jc01706   AbstractWebsite

Recent studies find interannual (i.e., 3 to 7 year), decadal (i.e., 9 to 13 year), and interdecadal (i.e., 18 to 23 year) periodicities, and a trend dominating global sea surface temperature (SST) and sea level pressure (SLP) variability over the past hundred years, with the interdecadal signal dominating sub-El Nino-Southern Oscillation (ENSO) frequencies. We isolate interdecadal frequencies in SST and SLP records by band passing with a window admitting 15 to 30 year periods. From 1900 to 1989, the rms of interdecadal-filtered SST and SLP anomalies is largest in the extratropics and eastern boundaries. First-mode empirical orthogonal functions (EOFs) explain about half the interdecadal variance in both variables, with the tropical warn phase peaking near 1900, 1920, 1940, 1960, and 1980. From 1955 to 1994, EOF spatial patterns of interdecadal SST, SLP, and 400m temperature (T400) anomalies reveals global reflection symmetries about the equator and global translation symmetries between ocean basins, with tropical and eastern ocean SSTs warmer (cooler) than normal, covarying with stronger (weaker) extratropical westerly winds, cooler (warmer) SSTs in western-central subarctic and subantarctic frontal zones (SAFZs), stronger (weaker) subtropic and subarctic gyre circulations in North Pacific and North Atlantic Oceans, and warmer (cooler) basin and global average SSTs of 0.1 degrees C or so. Evolution of interdecadal variability from the tropical warm phase to the tropical cool phase is propagative, also characterized by reflection and translation symmetries. During the tropical warm phase, cool SST anomalies along western-central SAFZs are advected slowly eastward to the eastern boundaries and subsequently advected poleward and equatorward by the mean gyre circulation, the latter conducting extratropical SST anomalies into the tropics. A delayed action oscillation model is constructed that yields the quasiperiodicity of interdecadal variability in a manner consistent with these global symmetries in both pattern and evolution.

Miller, AJ, Cayan DR, White WB.  1998.  A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. Journal of Climate. 11:3112-3127.   10.1175/1520-0442(1998)011<3112:awidci>;2   AbstractWebsite

From the early 1970s to the mid-1980s, the main thermocline of the subarctic gyre of the North Pacific Ocean shoaled with temperatures at 200-400-m depth cooling by 1 degrees-4 degrees C over the region. The gyre-scale structure of the shoaling is quasi-stationary and intensified in the western part of the basin north of 30 degrees N, suggesting concurrent changes in gyre-scale transport. A similar quasi-stationary cooling in the subtropical gyre south of 25 degrees N is also observed but lags the subpolar change by several years. To explore the physics of these changes, the authors examine an ocean model forced by observed wind stress and heat flux anomalies from 1970-88 in which they find similar changes in gyre-scale thermocline structure. The model current fields reveal that the North Pacific subpolar and subtropical gyres strengthened by roughly 10% from the 1970s to the 1980s. The bulk of the eastward Row of the model Kuroshio-Oyashio Extension returned westward via the subpolar gyre circuit, while the subtropical gyre return flow along 20 degrees N lags the subpolar changes by several years. The authors demonstrate that the model thermocline cooling and increased transport occurred in response to decadal-scale changes in basin-scale wind stress curl with the quasi-stationary oceanic response being in a time-dependent quasi-Sverdrup balance over much of the basin east of the date line. This wind stress curl driven response is quasi-stationary but occurs in conjunction with a propagating temperature anomaly associated with subduction in the central North Pacific that links the subpolar and subtropical gyre stationary changes and gives the appearance of circumgyre propagation. Different physics evidently controls the decadal subsurface temperature signal in different parts of the extratropical North Pacific.

Miller, AJ, White WB, Cayan DR.  1997.  North Pacific thermocline variations on ENSO timescales. Journal of Physical Oceanography. 27:2023-2039.   10.1175/1520-0485(1997)027<2023:nptvoe>;2   AbstractWebsite

The North Pacific thermocline (250 to 400 m) is studied using XBT observations acquired during the 1970s and 1980s. Interannual variations (3-5 yr timescales) in thermocline temperature, with O(0.1 degrees C) amplitude at 400 m, are found to exhibit westward propagation throughout the extratropical North Pacific up to 45 degrees N. Southward of 30 degrees N, the features propagate intact across the basin from the eastern boundary to the western boundary. Northward of 30 degrees N, the features can be observed to propagate only as far as the date line. The observed midlatitude thermocline anomalies are often related to tropical ENSO events in that they occur most strongly after the development of tropical El Nino or La Nina conditions and propagate westward from near the eastern boundary in the midlatitudes. But it is found that the observed midlatitude thermocline anomalies have larger phase speeds than theoretically predicted free baroclinic Rossby waves. Also, the observed anomalies have larger wavelength and faster propagation speeds than baroclinic Rossby waves that radiate from coastal Kelvin-like waves near the eastern boundary in well-known high-resolution models. Large-scale thermocline fluctuations that have spatial scale and phase speeds similar to the observations are also found in a coarse-resolution model of the Pacific Ocean forced by observed wind and heat Aux anomalies over the 1970-88 period. In the midlatitudes, north of 30 degrees N, large-scale Ekman pumping by interannual wind stress curl variations provides a significant driving mechanism for the modeled large-scale thermocline anomalies. The modeled ocean response is a combination of the static thermocline response to large-scale Ekman pumping plus a train of westward traveling Rossby waves, which accounts for part of the propagating temperature fluctuations. A tropical, remotely forced component is prominant near the eastern boundary, but this only contributes weakly in the model open ocean.

Reverdin, G, Cayan D, Kushnir Y.  1997.  Decadal variability of hydrography in the upper northern North Atlantic in 1948-1990. Journal of Geophysical Research-Oceans. 102:8505-8531.   10.1029/96jc03943   AbstractWebsite

We investigate the variability of the North Atlantic subarctic gyre in recent decades from time series of station temperature and salinity. Decadal variability stronger at the surface is identified, which exhibits vertical coherence over a layer deeper than the late winter mixed layer. In the northwestern Atlantic, it corresponds to the layer with a component of water from the Arctic Ocean or from the Canadian Arctic. The spatial coherence of the signal is investigated. An empirical orthogonal function decomposition of lagged time series indicates that a single pattern explains 70% of the variance in upper ocean salt content, corresponding to a propagating signal from the west to the northeast in the subarctic gyre. The most likely interpretation is that the salinity signal originates in the slope currents of the Labrador Sea and is diffused/advected eastward of the Grand Banks over the near western Atlantic. In the northwestern Atlantic, temperature fluctuations are strongly correlated to salinity fluctuations and are aligned along the average T-S characteristics. This signal suggests large variations in the outflow of fresh, cold water in the slope current, and is strongly correlated with ice cover. A basin scale atmospheric circulation of weakened westerlies at 55 degrees N, weaker northwesterlies west of Greenland and weaker southerlies over the central and eastern North Atlantic is associated with the high salinity and warm water phase of the first principal component. This circulation pattern leads fluctuations in the northeast Atlantic and lags those in the northwestern part of the basin. The wind indices also suggest that the fluctuations of the fresh water outflow occur during intervals of anomalously northerly winds, either east of Greenland (1965, 1968-1969) or off the Canadian Archipelago (1983-1984).

Miller, AJ, Cayan DR, Barnett TP, Graham NE, Oberhuber JM.  1994.  Interdecadal variability of the Pacific Ocean: model response to observed heat flux and wind stress anomalies. Climate Dynamics. 9:287-302.   10.1007/bf00204744   AbstractWebsite

Variability of the Pacific Ocean is examined in numerical simulations with an ocean general circulation model forced by observed anomalies of surface heat flux, wind stress and turbulent kinetic energy (TKE) over the period 1970-88. The model captures the 1976-77 winter time climate shift in sea surface temperature, as well as its monthly, seasonal and longer term variability as evidenced in regional time series and empirical orthogonal function analyses. Examination of the surface mixed-layer heat budget reveals that the 1976-77 shift was caused by a unique concurrance of sustained heat flux input anomalies and very strong horizontal advection anomalies during a multi-month period preceding the shift in both the central Pacific region (where cooling occurred) and the California coastal region (where warming occurred). In the central Pacific, the warm conditions preceding and the cold conditions following the shift tend to be maintained by anomalous vertical mixing due to increases in the atmospheric momentum flux (TKE input) into the mixed layer (which deepens in the model after the shift) from the early 1970s to the late 1970s and 1980s. Since the ocean model does not contain feedback to the atmosphere and it succeeds in capturing the major features of the 1976-77 shift, it appears that the midlatitude part of the shift was driven by the atmosphere, although effects of midlatitude ocean-atmosphere feedback are still possible. The surface mixed-layer heat budget also reveals that, in the central Pacific, the effects of heat flux input and vertical mixing anomalies are comparable in amplitude while horizontal advection anomalies are roughly half that size. In the California coastal region, in contrast, where wind variability is much weaker than in the central Pacific, horizontal advection and vertical mixing effects on the mixed-layer heat budget are only one-quarter the size of typical heat flux input anomalies.

Cayan, DR.  1992.  Variability of latent and sensible heat fluxes estimated using bulk formulas. Atmosphere-Ocean. 30:1-42. AbstractWebsite

The spatial and temporal variability of monthly average latent and sensible heat flux over the oceans is explored. Monthly flux anomalies are estimated using bulk formulae applied to COADS marine data over 1946-1986. Emphasis is on behaviour during fall and winter over the well sampled North Atlantic and North Pacific oceans, but available data from the Indian Ocean, from the tropics and from the Southern Hemisphere are also included Random observation errors and random weather sampling errors are reduced by averaging several observations together. Biases in the observations and in the bulk formulae are not automatically reduced by averaging, but because the mean of the fluxes is subtracted to provide the anomalies, the non-time-varying biases are diminished Largest latent flux anomalies occur from the tropics to middle latitudes, and largest sensible flux anomalies appear in middle-to-high latitudes. In mid-latitudes, monthly latent and sensible flux anomalies are strongly correlated, so that they tend to be reinforcing. The bulk parametrizations indicate that the latent and sensible flux anomalies typically outweigh those of the radiative fluxes, except in the tropics and in the summer extratropics where net solar flux variations become important. An analysis of variance, which identifies the dominant contributions by the fundamental marine variables, yields results that emphasize the importance of the mean values, as well as the anomalies of these variables, in creating latent and sensible flux anomalies. Although they contain small-scale "noise", there is a marked signal in the flux anomalies that is spatially organized and quite strongly related to the monthly atmospheric circulation. The first four rotated empirical orthogonal functions (REOFs) of the sum of the latent and sensible flux anomalies account for about half of the total variance in the North Atlantic and North Pacific basins during winter months. The REOFs have magnitudes that represent anomalies that typically exceed 50 W m-2 over substantial portions of the ocean basins. Links to the atmospheric circulation also indicate a short-period climate signal. Correlations of the amplitudes of the REOFs of the fluxes with the sea-level pressure field exhibit patterns that strongly resemble frequently occurring modes of monthly circulation anomalies. In the extratropics during winter, the atmospheric circulation affects the Bowen ratio (sensible flux/latent flux). When the wind is more equatorward or more continental than normal, the Bowen ratio increases.