Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Clemesha, RES, Gershunov A, Iacobellis SF, Cayan DR.  2017.  Daily variability of California coastal low cloudiness: A balancing act between stability and subsidence. Geophysical Research Letters. 44:3330-3338.   10.1002/2017gl073075   AbstractWebsite

We examine mechanisms driving daily variability of summer coastal low cloudiness (CLC) along the California coast. Daily CLC is derived from a satellite record from 1996 to 2014. Atmospheric rather than oceanic processes are mostly responsible for daily fluctuations in vertical stability that dictate short-period variation in CLC structure. Daily CLC anomalies are most strongly correlated to lower tropospheric stability anomalies to the north. The spatially offset nature of the cloud-stability relationship is a result of the balancing act that affects low cloudiness wherein subsidence drives increased stability, which promotes cloudiness, but too much subsidence limits cloudiness. Lay explanations claim that high inland temperatures pull in CLC, but such a process presumably would have the high temperatures directly inland. Rather, we find that the spatially offset associations between CLC and atmospheric circulation result in positive correlations between CLC and inland surface temperature anomalies to the north.

2016
Clemesha, RES, Gershunov A, Iacobellis SF, Williams AP, Cayan DR.  2016.  The northward march of summer low cloudiness along the California coast. Geophysical Research Letters. 43:1287-1295.   10.1002/2015gl067081   AbstractWebsite

A new satellite-derived low cloud retrieval reveals rich spatial texture and coherent space-time propagation in summertime California coastal low cloudiness (CLC). Throughout the region, CLC is greatest during May-September but has considerable monthly variability within this summer season. On average, June is cloudiest along the coast of southern California and northern Baja, Mexico, while July is cloudiest along northern California's coast. Over the course of the summer, the core of peak CLC migrates northward along coastal California, reaching its northernmost extent in late July/early August, then recedes while weakening. The timing and movement of the CLC climatological structure is related to the summer evolution of lower tropospheric stability and both its component parts, sea surface temperature and potential temperature at 700hPa. The roughly coincident seasonal timing of peak CLC with peak summertime temperatures translates into the strongest heat-modulating capacity of CLC along California's north coast.

2014
DeFlorio, MJ, Ghan SJ, Singh B, Miller AJ, Cayan DR, Russell LM, Somerville RCJ.  2014.  Semidirect dynamical and radiative effect of North African dust transport on lower tropospheric clouds over the subtropical North Atlantic in CESM 1.0. Journal of Geophysical Research: Atmospheres. 119:2013JD020997.   10.1002/2013JD020997   AbstractWebsite

This study uses a century length preindustrial climate simulation by the Community Earth System Model (CESM 1.0) to explore statistical relationships between dust, clouds, and atmospheric circulation and to suggest a semidirect dynamical mechanism linking subtropical North Atlantic lower tropospheric cloud cover with North African dust transport. The length of the run allows us to account for interannual variability of North African dust emissions and transport in the model. CESM's monthly climatology of both aerosol optical depth and surface dust concentration at Cape Verde and Barbados, respectively, agree well with available observations, as does the aerosol size distribution at Cape Verde. In addition, CESM shows strong seasonal cycles of dust burden and lower tropospheric cloud fraction, with maximum values occurring during boreal summer, when a strong correlation between these two variables exists over the subtropical North Atlantic. Calculations of Estimated Inversion Strength (EIS) and composites of EIS on high and low downstream North African dust months during boreal summer reveal that dust is likely increasing inversion strength over this region due to both solar absorption and reflection. We find no evidence for a microphysical link between dust and lower tropospheric clouds in this region. These results yield new insight over an extensive period of time into the complex relationship between North African dust and North Atlantic lower tropospheric clouds, which has previously been hindered by spatiotemporal constraints of observations. Our findings lay a framework for future analyses using different climate models and submonthly data over regions with different underlying dynamics.