Publications

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X [Y] Z   [Show ALL]
Y
Yan, XH, Niiler PP, Nadiga SK, Stewart RH, Cayan DR.  1995.  Seasonal heat storage in the North Pacific: 1976–1989. Journal of Geophysical Research-Oceans. 100:6899-6926.   10.1029/94jc03230   AbstractWebsite

Volunteer observing ship expendable bathythermograph data obtained during the period 1976-1989, from 30 degrees N to 40 degrees N in the North Pacific, were used to compute the rate of change of heat storage to a fixed upper ocean temperature surface. The variability of the storage rate in the seasonal timescale, computed on a 5 degrees latitude by 5 degrees longitude spatial scale, is compared to the net surface heat flux computed from available surface marine weather data to the same spatial and temporal resolution. Averaged across the entire basin, the difference between the average monthly heat storage rate and the average monthly heat flux is 3.76 Wm(-1). The average basin-wide absolute heat storage rate agrees to within 7.5% of the average absolute heat flux for the whole basin. An empirical orthogonal decomposition of the spatial patterns of the difference between the heat storage rate and the net heat flux reveals no obvious trends in the heat flux computation or possible physical processes responsible for the difference. Instead, the eddies shed by the warm boundary current, the Kuroshio, is probably responsible for the major part of the difference patterns in locations where the difference values are maximum. The most important results of this study are that the heat storage rate computed to a fixed isotherm matches the net heat flux extremely well at the chosen locations and across the whole basin; and the heat storage rate computation is sensitive to the isotherm choice and to the space scale involved.

Yang, Y, Russell LM, Xu L, Lou SJ, Lamjiri MA, Somerville RCJ, Miller AJ, Cayan DR, DeFlorio MJ, Ghan SJ, Liu Y, Singh B, Wang HL, Yoon JH, Rasch PJ.  2016.  Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations. Journal of Geophysical Research-Atmospheres. 121:6321-6335.   10.1002/2015jd024503   AbstractWebsite

We use three 150 year preindustrial simulations of the Community Earth System Model to quantify the impacts of El Nino-Southern Oscillation (ENSO) events on shortwave and longwave cloud radiative effects (CRESW and CRELW). Compared to recent observations from the Clouds and the Earth's Radiant Energy System data set, the model simulation successfully reproduces larger variations of CRESW and CRELW over the tropics. The ENSO cycle is found to dominate interannual variations of cloud radiative effects. Simulated cooling (warming) effects from CRESW (CRELW) are strongest over the tropical western and central Pacific Ocean during warm ENSO events, with the largest difference between 20 and 60 W m(-2), with weaker effects of 10-40 W m(-2) over Indonesian regions and the subtropical Pacific Ocean. Sensitivity tests show that variations of cloud radiative effects are mainly driven by ENSO-related changes in cloud fraction. The variations in midlevel and high cloud fractions each account for approximately 20-50% of the interannual variations of CRESW over the tropics and almost all of the variations of CRELW between 60 degrees S and 60 degrees N. The variation of low cloud fraction contributes to most of the variations of CRESW over the midlatitude oceans. Variations in natural aerosol concentrations explained 10-30% of the variations of both CRESW and CRELW over the tropical Pacific, Indonesian regions, and the tropical Indian Ocean. Changes in natural aerosol emissions and concentrations enhance 3-5% and 1-3% of the variations of cloud radiative effects averaged over the tropics.

Yin, ZY, Estberg J, Hallisey EJ, Cayan DR.  2007.  Spatial patterns of lightning at different spatial scales in the western United States during August of 1990: A case study using Geographic Information Systems technology. Journal of Environmental Informatics. 9:4-17.   10.3808/jei.200700083   AbstractWebsite

Geographic information systems (GIS) have been widely used to study spatial variability in different atmospheric processes. In this study, we used a GIS approach to explore the potential to examine variation patterns of lightning strikes at different scales so that micro-, synoptic-, and planetary-scale processes can be linked in explaining and modeling the distribution patterns of lightning strikes. The data collected by the ground-based lightning detection system for an entire month in the western United States were used as an example. Lightning strike density surfaces were generated using different kernel bandwidths, or search radii. It has been recognized that density surfaces are useful in visual interpretation of spatial patterns at different scales, but there are insufficient data on how well such surfaces can be used in quantitative analysis of point distribution patterns. In our study, the resulting surfaces were compared quantitatively with gridded lightning strikes using meshes, or fishnets, of different cell sizes. The fishnet cell sizes ranged from 1 km for micro-scale processes to 50 km for synoptic- and planetary-scale processes. The results suggest that there is a threshold in the search radius or kernel bandwidth, above which a significant amount of errors would be introduced in quantitative analysis. It could be argued that it is possible to achieve a balance between the need for visual interpretation of distribution patterns and the need for quantitative analysis at different scales. We used the lightning data of August 1990 and digital elevation models of 1 km resolution to perform a case study on the relationship between lightning occurrence and topography. Our results indicate that at different spatial scales, the relationships between lightning density and topography may reflect different processes that influenced the spatial distribution pattern of the lightning occurrence.