Publications

Export 39 results:
Sort by: Author Title [ Type  (Asc)] Year
Book Chapter
Peterson, DH, Cayan DR, Festa JF, Nichols FH, Walters RA, Slack JV, Hager SE, Schemel LE.  1989.  Climate variability in an estuary: effects of reverflow on San Francisco Bay. Aspects of climate variability in the Pacific and the western Americas. ( Peterson DH, Ed.).:419-442., Washington, DC, U.S.A.: American Geophysical Union Abstract
n/a
Cayan, DR, Webb RH.  1992.  El Nino Southern Oscillation and streamflow in the Western United States. El Nino: historical and paleoclimatic aspects of the southern oscillation. ( Diaz HF, Markgraf V, Eds.).:29-68., Cambridge [England]; New York, NY, USA: Cambridge University Press Abstract
n/a
Conference Paper
Peterson, DH, Cayan DR, Festa JF.  1986.  Interannual variability in biogeochemistry of partially-mixed estuaries: dissolved silicate cycles in northern San Francisco Bay. Estuarine variability : Proceedings of the Eighth biennial international estuarine research conference, University of New Hampshire, Durham, July 28-August 2, 1985. ( Wolfe DA, Ed.).:123-128., Orlando, Fla.: Academic Press Abstract
n/a
Peterson, DH, Cayan DR, Dettinger MD, Noble M, Riddle LG, Schemel LE, Smith RE, Uncles R, Walters R.  1996.  San Francisco Bay: observations, numerical simulation and statistical models. San Francisco Bay: the ecosystem. Further investigations into the natural history of San Francisco Bay and Delta with reference to the influence of man. ( Hollibaugh JT, Ed.).:9-34., San Francisco, Calif.: Pacific Division of the American Association for the Advancement of Science Abstract
n/a
Journal Article
Bytnerowicz, A, Cayan D, Riggan P, Schilling S, Dawson P, Tyree M, Wolden L, Tissell R, Preisler H.  2010.  Analysis of the effects of combustion emissions and Santa Ana winds on ambient ozone during the October 2007 southern California wildfires. Atmospheric Environment. 44:678-687.   10.1016/j.atmosenv.2009.11.014   AbstractWebsite

Combustion emissions and strong Santa Ana winds had pronounced effects on patterns and levels of ambient ozone (O(3)) in southern California during the extensive wildland fires of October 2007. These changes are described in detail for a rural receptor site, the Santa Margarita Ecological Reserve, located among large fires in San Diego and Orange counties. In addition, O(3) changes are also described for several other air quality monitoring sites in the general area of the fires. During the first phase of the fires, strong, dry and hot northeasterly Santa Ana winds brought into the area clean continental air masses, which resulted in minimal diurnal O(3) fluctuations and a 72-h average concentration of 36.8 ppb. During the- second phase of the fires, without Santa Ana winds present and air filled with smoke, daytime O(3) concentrations steadily increased and reached 95.2 ppb while the lowest nighttime levels returned to similar to 0 ppb. During that period the 8-h daytime average O(3) concentration reached 78.3 ppb, which exceeded the federal standard of 75 ppb. After six days of fires, O(3) diurnal concentrations returned to pre-fire patterns and levels. Published by Elsevier Ltd.

Nemani, RR, White MA, Cayan DR, Jones GV, Running SW, Coughlan JC, Peterson DL.  2001.  Asymmetric warming over coastal California and its impact on the premium wine industry. Climate Research. 19:25-34.   10.3354/cr019025   AbstractWebsite

Climatic changes over coastal California from 1951 to 1997 may have benefited the premium wine industry, as seen in higher quality wines and larger grape yields. Observed temperature warming trends were asymmetric, with greatest warming at night and during spring. Warming was associated with large increases in eastern Pacific sea surface temperatures (SST) and amounts of atmospheric water vapor. Although the average annual temperature warming trend was modest (1.13degreesC/47 yr), there was a 20 d reduction in frost occurrence and a 65 d increase in frost-free growing season length. In the Napa and Sonoma valleys, warmer winter and spring temperatures advanced the start of the growing season by 18 to 24 d, and enhanced atmospheric water vapor resulted in a 7% reduction in evaporative demand. Given the strong coupling between Pacific SSTs and the coastal California climate, and because regional-scale SSTs persist for 6 to 12 mo, additional research may allow the possibility of predicting vintage quantity and quality from previous winter conditions.

Enzel, Y, Cayan DR, Anderson RY, Wells SG.  1989.  Atmospheric circulation during Holocene lake stands in the Mojave Desert: evidence of regional climate change. Nature. 341:44-47.   10.1038/341044a0   AbstractWebsite

IT is commonly thought that the climate conditions that supported lakes over a period of years in the Mojave Desert in southern California, only existed before 8,000 yr BP and that the environment has been arid since1,2. Here we look at a drill core in the Silver Lake playa at the terminus of the Mojave River and find Holocene lake deposits which indicate that shallow lakes existed for at least a few decades. These deposits were radiocarbon dated at 3620 ±70 and 390 ± 90 yr BP, corresponding to the early Neo-glacial and the 'little ice age' respectively3. To identify the conditions necessary to produce these Holocene lake events we have examined the modern climate and hydrological patterns that produce ephemeral lakes in this usually arid watershed. Available data indicate that there is a link between anomalous winter atmospheric conditions over the North Pacific and Mojave River floods that produced ephemeral lakes in the Silver Lake playa and that the Mojave River filters out small to medium floods and allows only the extreme floods to reach the terminal playa and leave a record of the anomalous conditions. We suggest that the late Holocene lakes may have resulted from persistent similar atmospheric circulation patterns and winter floods.

Pierce, DW, Barnett TP, Hidalgo HG, Das T, Bonfils C, Santer BD, Bala G, Dettinger MD, Cayan DR, Mirin A, Wood AW, Nozawa T.  2008.  Attribution of declining western US snowpack to human effects. Journal of Climate. 21:6425-6444.   10.1175/2008jcli2405.1   AbstractWebsite

Observations show snowpack has declined across much of the western United States over the period 1950-99. This reduction has important social and economic implications, as water retained in the snowpack from winter storms forms an important part of the hydrological cycle and water supply in the region. A formal model-based detection and attribution (D-A) study of these reductions is performed. The detection variable is the ratio of 1 April snow water equivalent (SWE) to water-year-to-date precipitation (P), chosen to reduce the effect of P variability on the results. Estimates of natural internal climate variability are obtained from 1600 years of two control simulations performed with fully coupled ocean-atmosphere climate models. Estimates of the SWE/P response to anthropogenic greenhouse gases, ozone, and some aerosols are taken from multiple-member ensembles of perturbation experiments run with two models. The D-A shows the observations and anthropogenically forced models have greater SWE/P reductions than can be explained by natural internal climate variability alone. Model-estimated effects of changes in solar and volcanic forcing likewise do not explain the SWE/P reductions. The mean model estimate is that about half of the SWE/P reductions observed in the west from 1950 to 1999 are the result of climate changes forced by anthropogenic greenhouse gases, ozone, and aerosols.

Ralph, FM, Prather KA, Cayan D, Spackman JR, DeMott P, Dettinger M, Fairall C, Leung R, Rosenfeld D, Rutledge S, Waliser D, White AB, Cordeira J, Martin A, Helly J, Intrieri J.  2016.  CalWater field studies designed to quantify the roles of atmospheric rivers and aerosols in modulating US West Coast precipitation in a changing climate. Bulletin of the American Meteorological Society. 97:1209-1228.   10.1175/bams-d-14-00043.1   AbstractWebsite

The variability of precipitation and water supply along the U.S. West Coast creates major challenges to the region’s economy and environment, as evidenced by the recent California drought. This variability is strongly influenced by atmospheric rivers (ARs), which deliver much of the precipitation along the U.S. West Coast and can cause flooding, and by aerosols (from local sources and transported from remote continents and oceans) that modulate clouds and precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of droughts and floods, both now and under changing climate conditions.To address these gaps, a group of meteorologists, hydrologists, climate scientists, atmospheric chemists, and oceanographers have created an interdisciplinary research effort, with support from multiple agencies. From 2009 to 2011 a series of field campaigns [California Water Service (CalWater) 1] collected atmospheric chemistry, cloud microphysics, and meteorological measurements in California and associated modeling and diagnostic studies were carried out. Based on the remaining gaps, a vision was developed to extend these studies offshore over the eastern North Pacific and to enhance land-based measurements from 2014 to 2018 (CalWater-2). The dataset and selected results from CalWater-1 are summarized here. The goals of CalWater-2, and measurements to date, are then described.CalWater is producing new findings and exploring new technologies to evaluate and improve global climate models and their regional performance and to develop tools supporting water and hydropower management. These advances also have potential to enhance hazard mitigation by improving near-term weather prediction and subseasonal and seasonal outlooks.

Westerling, AL, Gershunov A, Brown TJ, Cayan DR, Dettinger MD.  2003.  Climate and wildfire in the western United States. Bulletin of the American Meteorological Society. 84:595-+.   10.1175/bams-84-5-595   AbstractWebsite

A 21-yr gridded monthly fire-starts and acres-burned dataset from U.S. Forest Service, Bureau of Land Management, National Park Service, and Bureau of Indian Affairs fire reports recreates the seasonality and interannual variability of wildfire in the western United States. Despite pervasive human influence in western fire regimes, it is striking how strongly these data reveal a fire season responding to variations in climate. Correlating anomalous wildfire frequency and extent with the Palmer Drought Severity Index illustrates the importance of prior and accumulated precipitation anomalies for future wildfire season severity. This link to antecedent seasons' moisture conditions varies widely with differences in predominant fuel type. Furthermore, these data demonstrate that the relationship between wildfire season severity and observed moisture anomalies from antecedent seasons is strong enough to forecast fire season severity at lead times of one season to a year in advance.

Westerling, AL, Cayan DR, Brown TJ, Hall B, Riddle LG.  2004.  Climate, Santa Ana winds and autumn wildfires in southern California. EOS Trans. AGU. 85:289. Abstract
n/a
Brooks, BA, Bawden G, Manjunath D, Werner C, Knowles N, Foster J, Dudas J, Cayan D.  2012.  Contemporaneous Subsidence and Levee Overtopping Potential, Sacramento-San Joaquin Delta, California. San Francisco Estuary and Watershed Science. 10 AbstractWebsite

The levee system in California’s Sacramento-San Joaquin Delta helps protect freshwater quality in a critical estuarine ecosystem that hosts substantial agricultural infrastructure and a large human population. We use space-based synthetic aperture radar interferometry (InSAR) to provide synoptic vertical land motion measurements of the Delta and levee system from 1995 to 2000. We find that Delta ground motion reflects seasonal hydrologic signals superimposed on average subsidence trends of 3-20 mm/yr. Because the measurements are insensitive to subsidence associated with peat thickness variations over Delta-island length scales, it is most likely that InSAR rates reflect underlying Quaternary sedimentary column compaction. We combine InSAR rates with sea-level rise scenarios to quantify 21st century levee overtopping potential. If left unmitigated, it is likely that 50 to 100 years from now much of the levee system will subside below design thresholds.

Hidalgo, HG, Das T, Dettinger MD, Cayan DR, Pierce DW, Barnett TP, Bala G, Mirin A, Wood AW, Bonfils C, Santer BD, Nozawa T.  2009.  Detection and attribution of streamflow timing changes to climate change in the western United States. Journal of Climate. 22:3838-3855.   10.1175/2009jcli2470.1   AbstractWebsite

This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow "center'' timing (the day in the "water-year'' on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States-the California region, the upper Colorado River basin, and the Columbia River basin), it is found that the observed trends toward earlier "center'' timing of snowmelt-driven streamflows in the western United States since 1950 are detectably different from natural variability (significant at the p < 0.05 level). Furthermore, the nonnatural parts of these changes can be attributed confidently to climate changes induced by anthropogenic greenhouse gases, aerosols, ozone, and land use. The signal from the Columbia dominates the analysis, and it is the only basin that showed a detectable signal when the analysis was performed on individual basins. It should be noted that although climate change is an important signal, other climatic processes have also contributed to the hydrologic variability of large basins in the western United States.

Bonfils, C, Santer BD, Pierce DW, Hidalgo HG, Bala G, Das T, Barnett TP, Cayan DR, Doutriaux C, Wood AW, Mirin A, Nozawa T.  2008.  Detection and attribution of temperature changes in the mountainous western United States. Journal of Climate. 21:6404-6424.   10.1175/2008jcli2397.1   AbstractWebsite

Large changes in the hydrology of the western United States have been observed since the mid-twentieth century. These include a reduction in the amount of precipitation arriving as snow, a decline in snowpack at low and midelevations, and a shift toward earlier arrival of both snowmelt and the centroid (center of mass) of streamflows. To project future water supply reliability, it is crucial to obtain a better understanding of the underlying cause or causes for these changes. A regional warming is often posited as the cause of these changes without formal testing of different competitive explanations for the warming. In this study, a rigorous detection and attribution analysis is performed to determine the causes of the late winter/early spring changes in hydrologically relevant temperature variables over mountain ranges of the western United States. Natural internal climate variability, as estimated from two long control climate model simulations, is insufficient to explain the rapid increase in daily minimum and maximum temperatures, the sharp decline in frost days, and the rise in degree-days above 0 degrees C (a simple proxy for temperature-driven snowmelt). These observed changes are also inconsistent with the model-predicted responses to variability in solar irradiance and volcanic activity. The observations are consistent with climate simulations that include the combined effects of anthropogenic greenhouse gases and aerosols. It is found that, for each temperature variable considered, an anthropogenic signal is identifiable in observational fields. The results are robust to uncertainties in model-estimated fingerprints and natural variability noise, to the choice of statistical down-scaling method, and to various processing options in the detection and attribution method.

Ralph, FM, Neiman PJ, Wick GA, Gutman SI, Dettinger MD, Cayan DR, White AB.  2006.  Flooding on California's Russian River: Role of atmospheric rivers. Geophysical Research Letters. 33   10.1029/2006gl026689   AbstractWebsite

[1] Experimental observations collected during meteorological field studies conducted by the National Oceanic and Atmospheric Administration near the Russian River of coastal northern California are combined with SSM/I satellite observations offshore to examine the role of landfalling atmospheric rivers in the creation of flooding. While recent studies have documented the characteristics and importance of narrow regions of strong meridional water vapor transport over the eastern Pacific Ocean (recently referred to as atmospheric rivers), this study describes their impact when they strike the U. S. West Coast. A detailed case study is presented, along with an assessment of all 7 floods on the Russian River since the experimental data were first available in October 1997. In all 7 floods, atmospheric river conditions were present and caused heavy rainfall through orographic precipitation. Not only do atmospheric rivers play a crucial role in the global water budget, they can also lead to heavy coastal rainfall and flooding, and thus represent a key phenomenon linking weather and climate.

White, WB, Cayan DR.  2000.  A global El Nino-Southern Oscillation wave in surface temperature and pressure and its interdecadal modulation from 1900 to 1997. Journal of Geophysical Research-Oceans. 105:11223-11242.   10.1029/1999jc900246   AbstractWebsite

Zonal wavenumber frequency spectra of sea surface temperature (SST) anomalies along the equator in the Indo-Pacific basin For the 98 years from 1900 to 1997 and of surface temperature (ST) and sea level pressure (SLP) anomalies extending around the globe along 10 degrees N for the 48 years from 1950 to 1997 display significant peak spectral energy density for standing and eastward propagating waves of 3-7 year periods and 120 degrees-360 degrees zonal wavelengths, The global standing wave is the familiar Southern Oscillation, but the global propagating wave represents a new paradigm for the El Nino-Southern Oscillation (ENSO). Global distributions of the phase velocities for this global ENSO wave finds covarying SLP and ST anomalies propagating eastward along the mean path of the Intertropical Convergence Zone (ITCZ), with the global zonal wavenumber 1 (2) component taking similar to 4 (6) years to cross the tropical Indian, Pacific, and Atlantic Oceans at a zonal average speed of 90 degrees (60 degrees) longitude per year. Along this path the interannual SST acid SLP anomalies are directly out of phase. Since thermocline depth anomalies underneath the ITCZ in the Pacific Ocean propagate westward [White et al. 1985], we view the global ENSO wave as a slow coupled SST wave trapped onto the ITCZ. Separating the global ENSO wave from the Southern Oscillation using complex empirical orthogonal function analysis finds the amplitude of the propagating wave to be half that of the standing wave, with the former (latter) accounting for one third (two thirds) of the interannual variability in Nino-3 SST and SLP indices during the 1980s. The global ENSO wave is shown to be responsible for the eastward propagation of covarying zonal surface wind and thermocline depth anomalies across the equatorial Pacific Ocean and through this mechanism is able to influence both the phasing and intensity of El Nino. Examining the persistence of the global ENSO wave from 1900 to 1997 finds it and the intensity of El Nino in the eastern equatorial Pacific Ocean modulated by interdecadal change, Both were strong (weak or absent) during decades of global tropical cooling (warming).

White, WB, Cayan DR, Lean J.  1998.  Global upper ocean heat storage response to radiative forcing from changing solar irradiance and increasing greenhouse gas/aerosol concentrations. Journal of Geophysical Research-Oceans. 103:21355-21366.   10.1029/98jc01477   AbstractWebsite

We constructed gridded fields of diabatic heat storage changes in the upper ocean from 20 degrees S to 60 degrees N from historical temperature profiles collected from 1955 to 1996. We filtered these 42 year records for periods of 8 to 15 years and 15 to 30 years, producing depth-weighted vertical average temperature (DVT) changes from the sea surface to the top of the main pycnocline. Basin and global averages of these DVT changes reveal decadal and interdecadal variability in phase across the Indian, Pacific, Atlantic, and Global Oceans, each significantly correlated with changing surface solar radiative forcing at a lag of 0 +/- 2 years. Decadal and interdecadal changes in global average DVT are 0.06 degrees +/- 0.01 degrees K and 0.04 degrees K +/- 0.01 degrees K, respectively, the same as those expected from consideration of the Stefan-Boltzmann radiation balance (i.e., 0.3 degrees K per W m(-2)) in response to 0.1% changes in surface solar radiative forcing of 0.2 W m(-2) and 0.15 W m(-2), respectively. Global spatial patterns of DVT changes are similar to temperature changes simulated in coupled ocean-atmosphere models, suggesting that natural modes of Earth's variability are phase-locked to the solar irradiance cycle. A trend in global average DVT of 0.15 degrees K over this 42 year record cannot be explained by changing surface solar radiative forcing. But when we consider the 0.5 W m(-2) increase in surface radiative forcing estimated from the increase in atmospheric greenhouse gas and aerosol (GGA) concentrations over this period [Intergovernmental Panel on Climate Change, 1995], the Stefan-Boltzmann radiation balance yields this observed change. Moreover, the sum of solar and GGA surface radiative forcing can explain the relatively sharp increase in global and basin average DVT in the late 1970's.

Barnett, TP, Pierce DW, Hidalgo HG, Bonfils C, Santer BD, Das T, Bala G, Wood AW, Nozawa T, Mirin AA, Cayan DR, Dettinger MD.  2008.  Human-induced changes in the hydrology of the western United States. Science. 319:1080-1083.   10.1126/science.1152538   AbstractWebsite

Observations have shown that the hydrological cycle of the western United States changed significantly over the last half of the 20th century. We present a regional, multivariable climate change detection and attribution study, using a high- resolution hydrologic model forced by global climate models, focusing on the changes that have already affected this primarily arid region with a large and growing population. The results show that up to 60% of the climate- related trends of river flow, winter air temperature, and snow pack between 1950 and 1999 are human- induced. These results are robust to perturbation of study variates and methods. They portend, in conjunction with previous work, a coming crisis in water supply for the western United States.

Yang, Y, Russell LM, Xu L, Lou SJ, Lamjiri MA, Somerville RCJ, Miller AJ, Cayan DR, DeFlorio MJ, Ghan SJ, Liu Y, Singh B, Wang HL, Yoon JH, Rasch PJ.  2016.  Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations. Journal of Geophysical Research-Atmospheres. 121:6321-6335.   10.1002/2015jd024503   AbstractWebsite

We use three 150 year preindustrial simulations of the Community Earth System Model to quantify the impacts of El Nino-Southern Oscillation (ENSO) events on shortwave and longwave cloud radiative effects (CRESW and CRELW). Compared to recent observations from the Clouds and the Earth's Radiant Energy System data set, the model simulation successfully reproduces larger variations of CRESW and CRELW over the tropics. The ENSO cycle is found to dominate interannual variations of cloud radiative effects. Simulated cooling (warming) effects from CRESW (CRELW) are strongest over the tropical western and central Pacific Ocean during warm ENSO events, with the largest difference between 20 and 60 W m(-2), with weaker effects of 10-40 W m(-2) over Indonesian regions and the subtropical Pacific Ocean. Sensitivity tests show that variations of cloud radiative effects are mainly driven by ENSO-related changes in cloud fraction. The variations in midlevel and high cloud fractions each account for approximately 20-50% of the interannual variations of CRESW over the tropics and almost all of the variations of CRELW between 60 degrees S and 60 degrees N. The variation of low cloud fraction contributes to most of the variations of CRESW over the midlatitude oceans. Variations in natural aerosol concentrations explained 10-30% of the variations of both CRESW and CRELW over the tropical Pacific, Indonesian regions, and the tropical Indian Ocean. Changes in natural aerosol emissions and concentrations enhance 3-5% and 1-3% of the variations of cloud radiative effects averaged over the tropics.

Pan, LL, Chen SH, Cayan D, Lin MY, Hart Q, Zhang MH, Liu YB, Wang JZ.  2011.  Influences of climate change on California and Nevada regions revealed by a high-resolution dynamical downscaling study. Climate Dynamics. 37:2005-2020.   10.1007/s00382-010-0961-5   AbstractWebsite

In this study, the influence of climate change to California and Nevada regions was investigated through high-resolution (4-km grid spacing) dynamical downscaling using the WRF (Weather Research & Forecasting) model. The dynamical downscaling was performed to both the GFS (Global forecast model) reanalysis (called GFS-WRF runs) from 2000-2006 and PCM (Parallel Climate Model) simulations (called PCM-WRF runs) from 1997-2006 and 2047-2056. The downscaling results were first validated by comparing current model outputs with the observational analysis PRISM (Parameter-elevation Regressions on Independent Slopes Model) dataset. In general, the dominant features from GFS-WRF runs and PCM-WRF runs were consistent with each other, as well as with PRISM results. The influences of climate change on the California and Nevada regions can be inferred from the model future runs. The averaged temperature showed a positive trend in the future, as in other studies. The temperature increases by around 1-2A degrees C under the assumption of business as usual over 50 years. This leads to an upward shifting of the freezing level (the contour line of 0A degrees C temperature) and more rain instead of snow in winter (December, January, and February). More hot days (> 32.2A degrees C or 90A degrees F) and extreme hot days (> 37.8A degrees C or 100A degrees F) are predicted in the Sacramento Valley and the southern parts of California and Nevada during summer (June, July, and August). More precipitation is predicted in northern California but not in southern California. Rainfall frequency slightly increases in the coast regions, but not in the inland area. No obvious trend of the surface wind was indicated. The probability distribution functions (PDF) of daily temperature, wind and precipitation for California and Nevada showed no significant change in shape in either winter or summer. The spatial distributions of precipitation frequency from GFS-WRF and PCM-WRF were highly correlated (r = 0.83). However, overall positive shifts were seen in the temperature field; increases of 2A degrees C for California and 3A degrees C for Nevada in summer and 2.5A degrees C for California and 1.5A degrees C for Nevada in winter. The PDFs predicted higher precipitation in winter and lower precipitation in the summer for both California and Nevada.

Westerling, AL, Gershunov A, Cayan DR, Barnett TP.  2002.  Long lead statistical forecasts of area burned in western US wildfires by ecosystem province. International Journal of Wildland Fire. 11:257-266.   10.1071/wf02009   AbstractWebsite

A statistical forecast methodology exploits large-scale patterns in monthly U.S. Climatological Division Palmer Drought Severity Index (PDSI) values over a wide region and several seasons to predict area burned in western US. wildfires by ecosystem province a season in advance. The forecast model, which is based on canonical correlations, indicates that a few characteristic patterns determine predicted wildfire season area burned. Strong negative associations between anomalous soil moisture (inferred from PDSI) immediately prior to the fire season and area burned dominate in most higher elevation forested provinces, while strong positive associations between anomalous soil moisture a year prior to the fire season and area burned dominate in desert and shrub and grassland provinces. In much of the western US., above- and below-normal fire season forecasts were successful 57% of the time or better, as compared with a 33% skill for a random guess, and with a low probability of being surprised by a fire season at the opposite extreme of that forecast.

Miller, AJ, White WB, Cayan DR.  1997.  North Pacific thermocline variations on ENSO timescales. Journal of Physical Oceanography. 27:2023-2039.   10.1175/1520-0485(1997)027<2023:nptvoe>2.0.co;2   AbstractWebsite

The North Pacific thermocline (250 to 400 m) is studied using XBT observations acquired during the 1970s and 1980s. Interannual variations (3-5 yr timescales) in thermocline temperature, with O(0.1 degrees C) amplitude at 400 m, are found to exhibit westward propagation throughout the extratropical North Pacific up to 45 degrees N. Southward of 30 degrees N, the features propagate intact across the basin from the eastern boundary to the western boundary. Northward of 30 degrees N, the features can be observed to propagate only as far as the date line. The observed midlatitude thermocline anomalies are often related to tropical ENSO events in that they occur most strongly after the development of tropical El Nino or La Nina conditions and propagate westward from near the eastern boundary in the midlatitudes. But it is found that the observed midlatitude thermocline anomalies have larger phase speeds than theoretically predicted free baroclinic Rossby waves. Also, the observed anomalies have larger wavelength and faster propagation speeds than baroclinic Rossby waves that radiate from coastal Kelvin-like waves near the eastern boundary in well-known high-resolution models. Large-scale thermocline fluctuations that have spatial scale and phase speeds similar to the observations are also found in a coarse-resolution model of the Pacific Ocean forced by observed wind and heat Aux anomalies over the 1970-88 period. In the midlatitudes, north of 30 degrees N, large-scale Ekman pumping by interannual wind stress curl variations provides a significant driving mechanism for the modeled large-scale thermocline anomalies. The modeled ocean response is a combination of the static thermocline response to large-scale Ekman pumping plus a train of westward traveling Rossby waves, which accounts for part of the propagating temperature fluctuations. A tropical, remotely forced component is prominant near the eastern boundary, but this only contributes weakly in the model open ocean.

Clemesha, RES, Gershunov A, Iacobellis SF, Williams AP, Cayan DR.  2016.  The northward march of summer low cloudiness along the California coast. Geophysical Research Letters. 43:1287-1295.   10.1002/2015gl067081   AbstractWebsite

A new satellite-derived low cloud retrieval reveals rich spatial texture and coherent space-time propagation in summertime California coastal low cloudiness (CLC). Throughout the region, CLC is greatest during May-September but has considerable monthly variability within this summer season. On average, June is cloudiest along the coast of southern California and northern Baja, Mexico, while July is cloudiest along northern California's coast. Over the course of the summer, the core of peak CLC migrates northward along coastal California, reaching its northernmost extent in late July/early August, then recedes while weakening. The timing and movement of the CLC climatological structure is related to the summer evolution of lower tropospheric stability and both its component parts, sea surface temperature and potential temperature at 700hPa. The roughly coincident seasonal timing of peak CLC with peak summertime temperatures translates into the strongest heat-modulating capacity of CLC along California's north coast.

Cloern, JE, Knowles N, Brown LR, Cayan D, Dettinger MD, Morgan TL, Schoellhamer DH, Stacey MT, van der Wegen M, Wagner RW, Jassby AD.  2011.  Projected evolution of California's San Francisco Bay-Delta-River System in a century of climate change. Plos One. 6   10.1371/journal.pone.0024465   AbstractWebsite

Background: Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. Methodology/Principal Findings: We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW) system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010-2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. Conclusions/Significance: Most of these environmental indicators change substantially over the 21(st) century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning to cope with growing risks to humans and the challenges of meeting demands for fresh water and sustaining native biota. Programs of ecosystem rehabilitation and biodiversity conservation in coastal landscapes will be most likely to meet their objectives if they are designed from considerations that include: (1) an integrated perspective that river-estuary systems are influenced by effects of climate change operating on both watersheds and oceans; (2) varying sensitivity among environmental indicators to the uncertainty of future climates; (3) inevitability of biological community changes as responses to cumulative effects of climate change and other drivers of habitat transformations; and (4) anticipation and adaptation to the growing probability of ecosystem regime shifts.

White, WB, Cayan DR.  1998.  Quasi-periodicity and global symmetries in interdecadal upper ocean temperature variability. Journal of Geophysical Research-Oceans. 103:21335-21354.   10.1029/98jc01706   AbstractWebsite

Recent studies find interannual (i.e., 3 to 7 year), decadal (i.e., 9 to 13 year), and interdecadal (i.e., 18 to 23 year) periodicities, and a trend dominating global sea surface temperature (SST) and sea level pressure (SLP) variability over the past hundred years, with the interdecadal signal dominating sub-El Nino-Southern Oscillation (ENSO) frequencies. We isolate interdecadal frequencies in SST and SLP records by band passing with a window admitting 15 to 30 year periods. From 1900 to 1989, the rms of interdecadal-filtered SST and SLP anomalies is largest in the extratropics and eastern boundaries. First-mode empirical orthogonal functions (EOFs) explain about half the interdecadal variance in both variables, with the tropical warn phase peaking near 1900, 1920, 1940, 1960, and 1980. From 1955 to 1994, EOF spatial patterns of interdecadal SST, SLP, and 400m temperature (T400) anomalies reveals global reflection symmetries about the equator and global translation symmetries between ocean basins, with tropical and eastern ocean SSTs warmer (cooler) than normal, covarying with stronger (weaker) extratropical westerly winds, cooler (warmer) SSTs in western-central subarctic and subantarctic frontal zones (SAFZs), stronger (weaker) subtropic and subarctic gyre circulations in North Pacific and North Atlantic Oceans, and warmer (cooler) basin and global average SSTs of 0.1 degrees C or so. Evolution of interdecadal variability from the tropical warm phase to the tropical cool phase is propagative, also characterized by reflection and translation symmetries. During the tropical warm phase, cool SST anomalies along western-central SAFZs are advected slowly eastward to the eastern boundaries and subsequently advected poleward and equatorward by the mean gyre circulation, the latter conducting extratropical SST anomalies into the tropics. A delayed action oscillation model is constructed that yields the quasiperiodicity of interdecadal variability in a manner consistent with these global symmetries in both pattern and evolution.