Publications

Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Huss, M, Bookhagen B, Huggel C, Jacobsen D, Bradley RS, Clague JJ, Vuille M, Buytaert W, Cayan DR, Greenwood G, Mark BG, Milner AM, Weingartner R, Winder M.  2017.  Toward mountains without permanent snow and ice. Earths Future. 5:418-435.   10.1002/2016ef000514   AbstractWebsite

The cryosphere in mountain regions is rapidly declining, a trend that is expected to accelerate over the next several decades due to anthropogenic climate change. A cascade of effects will result, extending from mountains to lowlands with associated impacts on human livelihood, economy, and ecosystems. With rising air temperatures and increased radiative forcing, glaciers will become smaller and, in some cases, disappear, the area of frozen ground will diminish, the ratio of snow to rainfall will decrease, and the timing and magnitude of both maximum and minimum streamflow will change. These changes will affect erosion rates, sediment, and nutrient flux, and the biogeochemistry of rivers and proglacial lakes, all of which influence water quality, aquatic habitat, and biotic communities. Changes in the length of the growing season will allow low-elevation plants and animals to expand their ranges upward. Slope failures due to thawing alpine permafrost, and outburst floods from glacier-and moraine-dammed lakes will threaten downstream populations.Societies even well beyond the mountains depend on meltwater from glaciers and snow for drinking water supplies, irrigation, mining, hydropower, agriculture, and recreation. Here, we review and, where possible, quantify the impacts of anticipated climate change on the alpine cryosphere, hydrosphere, and biosphere, and consider the implications for adaptation to a future of mountains without permanent snow and ice.

2014
Vano, JA, Udall B, Cayan DR, Overpeck JT, Brekke LD, Das T, Hartmann HC, Hidalgo HG, Hoerling M, McCabe GJ, Morino K, Webb RS, Werner K, Lettenmaier DP.  2014.  Understanding uncertainties in future Colorado River streamflow. Bulletin of the American Meteorological Society. 95:59-78.   10.1175/bams-d-12-00228.1   AbstractWebsite

The Colorado River is the primary water source for more than 30 million people in the United States and Mexico. Recent studies that project streamf low changes in the Colorado River all project annual declines, but the magnitude of the projected decreases range from less than 10% to 45% by the mid-twenty-first century. To understand these differences, we address the questions the management community has raised: Why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted? We identify four major sources of disparities among studies that arise from both methodological and model differences. In order of importance, these are differences in 1) the global climate models (GCMs) and emission scenarios used; 2) the ability of land surface and atmospheric models to simulate properly the high-elevation runoff source areas; 3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and 4) the methods used to statistically downscale GCM scenarios. In accounting for these differences, there is substantial evidence across studies that future Colorado River streamflow will be reduced under the current trajectories of anthropogenic greenhouse gas emissions because of a combination of strong temperature-induced runoff curtailment and reduced annual precipitation. Reconstructions of preinstrumental streamflows provide additional insights; the greatest risk to Colorado River streamf lows is a multidecadal drought, like that observed in paleoreconstructions, exacerbated by a steady reduction in flows due to climate change. This could result in decades of sustained streamflows much lower than have been observed in the ~100 years of instrumental record.

2011
Das, T, Pierce DW, Cayan DR, Vano JA, Lettenmaier DP.  2011.  The importance of warm season warming to western US streamflow changes. Geophysical Research Letters. 38   10.1029/2011gl049660   AbstractWebsite

Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3 C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Citation: Das, T., D. W. Pierce, D. R. Cayan, J. A. Vano, and D. P. Lettenmaier (2011), The importance of warm season warming to western U. S. streamflow changes, Geophys. Res. Lett., 38, L23403, doi: 10.1029/2011GL049660.

2008
Cayan, DR, Luers AL, Franco G, Hanemann M, Croes B, Vine E.  2008.  Overview of the California climate change scenarios project. Climatic Change. 87:S1-S6.   10.1007/s10584-007-9352-2   AbstractWebsite

In response to an Executive Order by California Governor Schwarzenegger, an evaluation of the implications to California of possible climate changes was undertaken using a scenario-based approach. The "Scenarios Project" investigated projected impacts of climate change on six sectors in the California region. The investigation considered the early, middle and later portions of the twenty-first century, guided by a set of IPCC Fourth Assessment global climate model runs forced by higher and lower greenhouse gas emission scenarios. Each of these climate simulations produce substantial impacts in California that would require adaptations from present practices or status. The most severe impacts could be avoided, however, if emissions can be held near the lower end of global greenhouse gas emissions scenarios.

2004
Hayhoe, K, Cayan D, Field CB, Frumhoff PC, Maurer EP, Miller NL, Moser SC, Schneider SH, Cahill KN, Cleland EE, Dale L, Drapek R, Hanemann RM, Kalkstein LS, Lenihan J, Lunch CK, Neilson RP, Sheridan SC, Verville JH.  2004.  Emissions pathways, climate change, and impacts on California. Proceedings of the National Academy of Sciences of the United States of America. 101:12422-12427.   10.1073/pnas.0404500101   AbstractWebsite

The magnitude of future climate change depends substantially on the greenhouse gas emission pathways we choose. Here we explore the implications of the highest and lowest Intergovernmental Panel on Climate Change emissions pathways for climate change and associated impacts in California. Based on climate projections from two state-of-the-art climate models with low and medium sensitivity (Parallel Climate Model and Hadley Centre Climate Model, version 3, respectively), we find that annual temperature increases nearly double from the lower B1 to the higher A1fi emissions scenario before 2100. Three of four simulations also show greater increases in summer temperatures as compared with winter. Extreme heat and the associated impacts on a range of temperature-sensitive sectors are substantially greater under the higher emissions scenario, with some interscenario differences apparent before midcentury. By the end of the century under the B1 scenario, heatwaves and extreme heat in Los Angeles quadruple in frequency while heat-related mortality increases two to three times; alpine/subalpine forests are reduced by 50-75%; and Sierra snowpack is reduced 30-70%. Under A1fi, heatwaves in Los Angeles are six to eight times more frequent, with heat-related excess mortality increasing five to seven times; alpine/subalpine forests are reduced by 75-90%; and snowpack declines 73-90%, with cascading impacts on runoff and streamflow that, combined with projected modest declines in winter precipitation, could fundamentally disrupt California's water rights system. Although interscenario differences in climate impacts and costs of adaptation emerge mainly in the second half of the century, they are strongly dependent on emissions from preceding decades.

1987
Venrick, EL, McGowan JA, Cayan DR, Hayward TL.  1987.  Climate and chlorophyll-a: long-term trends in the central North Pacific Ocean. Science. 238:70-72.   10.1126/science.238.4823.70   AbstractWebsite

Since 1968 a significant increase in total chlorophyll a in the water column during the summer in the central North Pacific Ocean has been observed. A concomitant increase in winter winds and a decrease in sea surface temperature suggest that long-period fluctuations in atmospheric characteristics have changed the carrying capacity of the central Pacific epipelagic ecosystem.