Export 6 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
Knowles, N, Cayan DR.  2002.  Potential effects of global warming on the Sacramento/San Joaquin watershed and the San Francisco estuary. Geophysical Research Letters. 29   10.1029/2001gl014339   AbstractWebsite

[1] California's primary hydrologic system, the San Francisco estuary and its upstream watershed, is vulnerable to the regional hydrologic consequences of projected global climate change. Projected temperature anomalies from a global climate model are used to drive a combined model of watershed hydrology and estuarine dynamics. By 2090, a projected temperature increase of 2.1degreesC results in a loss of about half of the average April snowpack storage, with greatest losses in the northern headwaters. Consequently, spring runoff is reduced by 5.6 km(3) (similar to20% of historical annual runoff), with associated increases in winter flood peaks. The smaller spring flows yield spring/summer salinity increases of up to 9 psu, with larger increases in wet years.

Knowles, N, Cronkite-Ratcliff C, Pierce DW, Cayan DR.  2018.  Responses of unimpaired flows, storage, and managed flows to scenarios of climate change in the San Francisco Bay-Delta Watershed. Water Resources Research. 54:7631-7650.   10.1029/2018wr022852   AbstractWebsite

Projections of meteorology downscaled from global climate model runs were used to drive a model of unimpaired hydrology of the Sacramento/San Joaquin watershed, which in turn drove models of operational responses and managed flows. Twenty daily climate change scenarios for water years 1980-2099 were evaluated with the goal of producing inflow boundary conditions for a watershed sediment model and for a hydrodynamical model of the San Francisco Bay-Delta estuary. The resulting time series of meteorology, snowpack, unimpaired flow, reservoir storage, and managed flow were analyzed for century-scale trends. In the Sacramento basin, which dominates Bay-Delta inflows, all 20 scenarios portrayed warming trends (with a mean of 4.1 degrees C) and most had precipitation increases (with a mean increase of 9%). Sacramento basin snowpack water equivalent declined sharply (by 89%), which was associated with a major shift toward earlier unimpaired runoff timing (33% more flow arriving prior to 1 April). Sacramento basin reservoirs showed large declines in end-of-September storage. Water-year averaged outflows increased for most scenarios for both unimpaired and impaired flows, and frequency of extremely high daily unimpaired and impaired flows increased (increases of 175% and 170%, respectively). Managed Delta inflows were projected to experience large increases in the wet season and declines in the dry season. Changes in management strategy and infrastructure can mitigate some of these changes, though to what degree is uncertain.

Knowles, N, Cayan DR.  2004.  Elevational dependence of projected hydrologic changes in the San Francisco Estuary and watershed. Climatic Change. 62:319-336.   10.1023/B:CLIM.0000013696.14308.b9   AbstractWebsite

California's primary hydrologic system, the San Francisco Estuary and its upstream watershed, is vulnerable to the regional hydrologic consequences of projected global climate change. Previous work has shown that a projected warming would result in a reduction of snowpack storage leading to higher winter and lower spring-summer streamflows and increased spring-summer salinities in the estuary. The present work shows that these hydrologic changes exhibit a strong dependence on elevation, with the greatest loss of snowpack volume in the 1300 - 2700 m elevation range. Exploiting hydrologic and estuarine modeling capabilities to trace water as it moves through the system reveals that the shift of water in mid-elevations of the Sacramento river basin from snowmelt to rainfall runoff is the dominant cause of projected changes in estuarine inflows and salinity. Additionally, although spring-summer losses of estuarine inflows are balanced by winter gains, the losses have a stronger influence on salinity since longer spring-summer residence times allow the inflow changes to accumulate in the estuary. The changes in inflows sourced in the Sacramento River basin in approximately the 1300 - 2200 m elevation range thereby lead to a net increase in estuarine salinity under the projected warming. Such changes would impact ecosystems throughout the watershed and threaten to contaminate much of California's freshwater supply.

Knowles, N, Dettinger MD, Cayan DR.  2006.  Trends in snowfall versus rainfall in the Western United States. Journal of Climate. 19:4545-4559.   10.1175/jcli3850.1   AbstractWebsite

The water resources of the western United States depend heavily on snowpack to store part of the wintertime precipitation into the drier summer months. A well-documented shift toward earlier runoff in recent decades has been attributed to 1) more precipitation falling as rain instead of snow and 2) earlier snowmelt. The present study addresses the former, documenting a regional trend toward smaller ratios of winter-total snowfall water equivalent (SFE) to winter-total precipitation (P) during the period 1949-2004. The trends toward reduced SFE are a response to warming across the region, with the most significant reductions occurring where winter wet-day minimum temperatures, averaged over the study period, were warmer than -5 degrees C. Most SFE reductions were associated with winter wet-day temperature increases between 0 degrees and -3 degrees C over the study period. Warmings larger than this occurred mainly at sites where the mean temperatures were cool enough that the precipitation form was less susceptible to warming trends. The trends toward reduced SFE/P ratios were most pronounced in March regionwide and in January near the West Coast, corresponding to widespread warming in these months. While mean temperatures in March were sufficiently high to allow the warming trend to produce SFE/P declines across the study region, mean January temperatures were cooler, with the result that January SFE/P impacts were restricted to the lower elevations near the West Coast. Extending the analysis back to 1920 shows that although the trends presented here may be partially attributable to interdecadal climate variability associated with the Pacific decadal oscillation, they also appear to result from still longer-term climate shifts.

Kueppers, LM, Snyder MA, Sloan LC, Cayan D, Jin J, Kanamaru H, Kanamitsu M, Miller NL, Tyree M, Due H, Weare B.  2008.  Seasonal temperature responses to land-use change in the western United States. Global and Planetary Change. 60:250-264.   10.1016/j.gloplacha.2007.03.005   AbstractWebsite

In the western United States, more than 79 000 km 2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land-atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) - RSM, RegCM3, MM5-CLM3, and DRCM - to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (- 1.4 to -3.1 degrees C) and maximum (-2.9 to -6.1 degrees C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest. (c) 2007 Elsevier B.V. All rights reserved.