Publications

Export 11 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F [G] H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
G
Georgakakos, KP, Bae DH, Cayan DR.  1995.  Hydroclimatology of continental watersheds: 1. Temporal Analyses. Water Resources Research. 31:655-675.   10.1029/94wr02375   AbstractWebsite

The linkage between meteorology/climate and hydrology of temperate latitude catchments on daily to decade time scales is studied. Detailed hydrology is provided by a hydrologic catchment model, adapted from the operational streamflow forecast model of the National Weather Service River Forecast System. The model is tuned to respond to observed daily precipitation and potential evaporation input. Results from the Bird Creek basin with outlet near Sperry, Oklahoma, and from the Boone River basin with outlet at Webster City, Iowa, indicate that the model quite accurately simulates the observed daily discharge over 40 years at each of the two 2000-km(2) basins. Daily cross-correlations between observed and simulated basin outflows were better than 0.8 for both basins over a 40-year historical period. Soil moisture variability over a period of four decades is studied, and an assessment of temporal and spatial (as related to the separation distance of the two basins) scales present in the estimated soil moisture record is made. Negative soil. water anomalies have larger magnitudes than positive anomalies, and comparison of the simulated soil water records of the two basins indicates spatial scales of variability that in several cases are as long as the interbasin distance. The temporal scales of soil water content are considerably longer than those of the forcing atmospheric variables for all seasons and both basins. Timescales of upper and total soil water content anomalies are typically 1 and 3 months, respectively. Linkage between the hydrologic components and both local and regional-to-hemispheric atmospheric variability is studied, both for atmosphere forcing hydrology and hydrology forcing atmosphere. For both basins, crosscorrelation analysis shows that local precipitation strongly forces soil water in the upper soil layers with a 10-day lag. There is no evidence of soil water feedback to local precipitation. However, significant cross-correlation values are obtained for upper soil water leading daily maximum temperature with 5-10 day lags, especially during periods of extremely high or low soil water content. Complementary results of a spatial hydroclimatic analysis are presented in a companion paper (Cayan and Georgakakos, this issue).

Gershunov, A, Cayan DR.  2003.  Heavy daily precipitation frequency over the contiguous United States: Sources of climatic variability and seasonal predictability. Journal of Climate. 16:2752-2765.   10.1175/1520-0442(2003)016<2752:hdpfot>2.0.co;2   AbstractWebsite

By matching large-scale patterns in climate fields with patterns in observed station precipitation, this work explores seasonal predictability of precipitation in the contiguous United States for all seasons. Although it is shown that total seasonal precipitation and frequencies of less-than-extreme daily precipitation events can be predicted with much higher skill, the focus of this study is on frequencies of daily precipitation above the seasonal 90th percentile (P90), a variable whose skillful prediction is more challenging. Frequency of heavy daily precipitation is shown to respond to ENSO as well as to non-ENSO interannual and interdecadal variability in the North Pacific. Specification skill achieved by a statistical model based on contemporaneous SST forcing with and without an explicit dynamical atmosphere is compared and contrasted. Statistical models relating the SST forcing patterns directly to observed station precipitation are shown to perform consistently better in all seasons than hybrid (dynamical-statistical) models where the SST forcing is first translated to atmospheric circulation via three separate general circulation models and the dynamically computed circulation anomalies are statistically related to observed precipitation. Skill is summarized for all seasons, but in detail for January-February-March, when it is shown that predictable patterns are spatially robust regardless of the approach used. Predictably, much of the skill is due to ENSO. While the U. S. average skill is modest, regional skill levels can be quite high. It is also found that non-ENSO-related skill is significant, especially for the extreme Southwest and that this is due mostly to non-ENSO interannual and decadal variability in the North Pacific SST forcing. Although useful specification skill is achieved by both approaches, hybrid predictability is not pursued further in this effort. Rather, prognostic analysis is carried out with the purely statistical approach to analyze P90 predictability based on antecedent SST forcing. Skill at various lead times is investigated and it is shown that significant regional skill can be achieved at lead times of several months even in the absence of strong ENSO forcing.

Gershunov, A, Cayan DR, Iacobellis SF.  2009.  The great 2006 heat wave over California and Nevada: Signal of an increasing trend. Journal of Climate. 22:6181-6203.   10.1175/2009jcli2465.1   AbstractWebsite

Most of the great California-Nevada heat waves can be classified into primarily daytime or nighttime events depending on whether atmospheric conditions are dry or humid. A rash of nighttime-accentuated events in the last decade was punctuated by an unusually intense case in July 2006, which was the largest heat wave on record (1948-2006). Generally, there is a positive trend in heat wave activity over the entire region that is expressed most strongly and clearly in nighttime rather than daytime temperature extremes. This trend in nighttime heat wave activity has intensified markedly since the 1980s and especially since 2000. The two most recent nighttime heat waves were also strongly expressed in extreme daytime temperatures. Circulations associated with great regional heat waves advect hot air into the region. This air can be dry or moist, depending on whether a moisture source is available, causing heat waves to be expressed preferentially during day or night. A remote moisture source centered within a marine region west of Baja California has been increasing in prominence because of gradual sea surface warming and a related increase in atmospheric humidity. Adding to the very strong synoptic dynamics during the 2006 heat wave were a prolonged stream of moisture from this southwestern source and, despite the heightened humidity, an environment in which afternoon convection was suppressed, keeping cloudiness low and daytime temperatures high. The relative contributions of these factors and possible relations to global warming are discussed.

Gershunov, A, Barnett TP, Cayan DR.  1999.  North Pacific interdecadal oscillation seen as factor in ENSO-related North American climate anomalies. EOS Trans. AGU. 80:25-30. Abstract
n/a
Gershunov, A, Barnett TP, Cayan DR, Tubbs T, Goddard L.  2000.  Predicting and downscaling ENSO impacts on intraseasonal precipitation statistics in California: The 1997/98 event. Journal of Hydrometeorology. 1:201-210.   10.1175/1525-7541(2000)001<0201:padeio>2.0.co;2   AbstractWebsite

Three long-range forecasting methods have been evaluated for prediction and downscaling of seasonal and intraseasonal precipitation statistics in California. Full-statistical, hybrid-dynamical-statistical and full-dynamical approaches have been used to forecast Fl Nino-Southern Oscillation (ENSO)-related total precipitation, daily precipitation frequency, and average intensity anomalies during the January-March season. For El Nino winters, the hybrid approach emerges as the best performer, while La Nina forecasting skill is poor. The full-statistical forecasting method features reasonable forecasting skill for both La Nina and El Nino winters. The performance of the full-dynamical approach could not be evaluated as rigorously as that of the other two forecasting schemes. Although the full-dynamical forecasting approach is expected to outperform simpler forecasting schemes in the long run, evidence is presented to conclude that, at present, the full-dynamical forecasting approach is the least viable of the three, at least in California. The authors suggest that operational forecasting of any intraseasonal temperature, precipitation, or streamflow statistic derivable from the available-records is possible now for ENSO-extreme years.

Gershunov, A, Shulgina T, Clemesha RES, Guirguis K, Pierce DW, Dettinger MD, Lavers DA, Cayan DR, Polade SD, Kalansky J, Ralph FM.  2019.  Precipitation regime change in Western North America: The role of atmospheric rivers. Scientific Reports. 9   10.1038/s41598-019-46169-w   AbstractWebsite

Daily precipitation in California has been projected to become less frequent even as precipitation extremes intensify, leading to uncertainty in the overall response to climate warming. Precipitation extremes are historically associated with Atmospheric Rivers (ARs). Sixteen global climate models are evaluated for realism in modeled historical AR behavior and contribution of the resulting daily precipitation to annual total precipitation over Western North America. The five most realistic models display consistent changes in future AR behavior, constraining the spread of the full ensemble. They, moreover, project increasing year-to-year variability of total annual precipitation, particularly over California, where change in total annual precipitation is not projected with confidence. Focusing on three representative river basins along the West Coast, we show that, while the decrease in precipitation frequency is mostly due to non-AR events, the increase in heavy and extreme precipitation is almost entirely due to ARs. This research demonstrates that examining meteorological causes of precipitation regime change can lead to better and more nuanced understanding of climate projections. It highlights the critical role of future changes in ARs to Western water resources, especially over California.

Giese, BS, Cayan DR.  1993.  Surface heat flux parameterizations and tropical Pacific sea surface temperature simulations. Journal of Geophysical Research-Oceans. 98:6979-6989.   10.1029/93jc00323   AbstractWebsite

Models of the tropical Pacific Ocean routinely use bulk formulae to estimate the surface fluxes of heat into and out of the ocean. The formulae generally require atmospheric variables such as cloud cover, surface wind speed, air-sea temperature difference, and relative humidity. Since these quantities are not provided by most tropical Pacific Ocean models, modelers have resorted to simplifying parameterizations in terms of a few primary variables. Several of these parameterizations are tested by using observed data and comparing fluxes calculated using the simplified parameterizations with those from the full bulk formula. The impact of the various parameterizations is also assessed in a tropical Pacific Ocean general circulation model by comparing model sea surface temperature (SST) with the monthly means and anomalies of observed tropical Pacific SST during a 6-year period that included both warm and cold episodes. The different flux parameterizations yield a broad mix of results. Overall, using a constant relative humidity of 0.80 does well, while using a constant downward radiation and a constant air temperature minus SST produces large discrepancies in comparison with the full flux parameterizations. In agreement with previous studies the model runs demonstrate that SST variability on the equator is dominated by wave processes whereas off the equator the surface flux of heat plays a crucial role in determining changes in SST.

Graham, NE, Cayan DR, Bromirski PD, Flick RE.  2013.  Multi-model projections of twenty-first century North Pacific winter wave climate under the IPCC A2 scenario. Climate Dynamics. 40:1335-1360.   10.1007/s00382-012-1435-8   AbstractWebsite

A dynamical wave model implemented over the North Pacific Ocean was forced with winds from three coupled global climate models (CGCMs) run under a medium-to-high scenario for greenhouse gas emissions through the twenty-first century. The results are analyzed with respect to changes in upper quantiles of significant wave height (90th and 99th percentile H-S) during boreal winter. The three CGCMs produce surprisingly similar patterns of change in winter wave climate during the century, with waves becoming 10-15 % smaller over the lower mid-latitudes of the North Pacific, particularly in the central and western ocean. These decreases are closely associated with decreasing windspeeds along the southern flank of the main core of the westerlies. At higher latitudes, 99th percentile wave heights generally increase, though the patterns of change are less uniform than at lower latitudes. The increased wave heights at high latitudes appear to be due a variety of wind-related factors including both increased windspeeds and changes in the structure of the wind field, these varying from model to model. For one of the CGCMs, a commonly used statistical approach for estimating seasonal quantiles of H-S on the basis of seasonal mean sea level pressure (SLP) is used to develop a regression model from 60 years of twentieth century data as a training set, and then applied using twenty-first century SLP data. The statistical model reproduces the general pattern of decreasing twenty-first century wave heights south of similar to 40 N, but underestimates the magnitude of the changes by similar to 50-70 %, reflecting relatively weak coupling between sea level pressure and wave heights in the CGCM data and loss of variability in the statistically projected wave heights.

Guirguis, K, Gershunov A, Cayan DR.  2015.  Interannual variability in associations between seasonal climate, weather, and extremes: wintertime temperature over the Southwestern United States. Environmental Research Letters. 10   10.1088/1748-9326/10/12/124023   AbstractWebsite

Temperature variability in the Southwest US is investigated using skew-normal probability distribution functions (SN PDFs) fitted to observed wintertime daily maximum temperature records. These PDFs vary significantly between years, with important geographical differences in the relationship between the central tendency and tails, revealing differing linkages between weather and climate. The warmest and coldest extremes do not necessarily follow the distribution center. In some regions one tail of the distribution shows more variability than does the other. For example, in California the cold tail is more variable while the warm tail remains relatively stable, so warm years are associated with fewer cold extremes but not necessarily more warm extremes. The opposite relationship is seen in the Great Plains. Changes in temperature PDFs are conditioned by different phases of El Nino-La Nina (ENSO) and the Pacific decadal oscillation (PDO). In the Southern Great Plains, La Nina and/or negative PDO are associated with generally warmer conditions. However, in terms of extremes, while the warm tails become thicker and longer, the cool tails are not impacted-extremely warm days become more frequent but extremely cool days are not less frequent. In contrast, in coastal California, La Nina or negative PDO bring generally cooler conditions with more/stronger cold extremes but the warm extreme probability is not significantly affected. These results could have implications for global warming. If a rigid shift of the whole range occurs, then warm years are not necessarily a good analogue for a warmer climate. If global warming instead brings regional changes more aligned with a preferred state of dominant climate variability modes, then we may see asymmetric changes in the tails of local temperature PDFs.

Guirguis, K, Gershunov A, Cayan DR, Pierce DW.  2018.  Heat wave probability in the changing climate of the Southwest US. Climate Dynamics. 50:3853-3864.   10.1007/s00382-017-3850-3   AbstractWebsite

Analyses of observed non-Gaussian daily minimum and maximum temperature probability distribution functions (PDFs) in the Southwest US highlight the importance of variance and warm tail length in determining future heat wave probability. Even if no PDF shape change occurs with climate change, locations with shorter warm tails and/or smaller variance will see a greater increase in heat wave probability, defined as exceedances above the historical 95th percentile threshold, than will long tailed/larger variance distributions. Projections from ten downscaled CMIP5 models show important geospatial differences in the amount of warming expected for a location. However, changes in heat wave probability do not directly follow changes in background warming. Projected changes in heat wave probability are largely explained by a rigid shift of the daily temperature distribution. In some locations where there is more warming, future heat wave probability is buffered somewhat by longer warm tails. In other parts of the Southwest where there is less warming, heat wave probability is relatively enhanced because of shorter tailed PDFs. Effects of PDF shape changes are generally small by comparison to those from a rigid shift, and fall within the range of uncertainty among models in the amount of warming expected by the end of the century.

Guzman-Morales, J, Gershunov A, Theiss J, Li HQ, Cayan D.  2016.  Santa Ana Winds of Southern California: Their climatology, extremes, and behavior spanning six and a half decades. Geophysical Research Letters. 43:2827-2834.   10.1002/2016gl067887   AbstractWebsite

Santa Ana Winds (SAWs) are an integral feature of the regional climate of Southern California/Northern Baja California region, but their climate-scale behavior is poorly understood. In the present work, we identify SAWs in mesoscale dynamical downscaling of a global reanalysis from 1948 to 2012. Model winds are validated with anemometer observations. SAWs exhibit an organized pattern with strongest easterly winds on westward facing downwind slopes and muted magnitudes at sea and over desert lowlands. We construct hourly local and regional SAW indices and analyze elements of their behavior on daily, annual, and multidecadal timescales. SAWs occurrences peak in winter, but some of the strongest winds have occurred in fall. Finally, we observe that SAW intensity is influenced by prominent large-scale low-frequency modes of climate variability rooted in the tropical and north Pacific ocean-atmosphere system.