Radiolarian assemblages from Santa Barbara Basin sediments: Recent interdecadal variability

Weinheimer, AL, Cayan DR.  1997.  Radiolarian assemblages from Santa Barbara Basin sediments: Recent interdecadal variability. Paleoceanography. 12:658-670.

Date Published:



california current system, climate-change, el-nino events, last 8000 years, north, pacific-ocean, polycystine radiolaria, sea-level, southern-california, surface-temperature, vertical-distribution patterns


Santa Barbara Basin contains a sedimentary record ideal for high-resolution paleoclimate studies because of the annual varves and regional-to global-scale climate signals preserved in the sediments [Lange er al., 1990; Kennett and Ingram, 1995], even though it does not lie directly in the path of the California Current. A nearly 100-year annual time series (1909-1991) of polycystine radiolarian assemblages from Santa Barbara Basin (SBB) sediments was analyzed to the species level. Counts on a replicate SBB core, dated 1870-1987, indicate that results are reproducible and the flux of a few representative species can be extrapolated to estimate fluxes of environmentally sensitive groups. The frequency of species occurrences resembles a lognormal curve and year-by-year comparisons of species fluxes revealed only modest changes in the assemblages from 1909-1991, indicating that the assemblages represent a single oceanic province. For paleoceanographic analysis of the radiolarian record, species were combined into groups according to the water mass in which they occur. To test this method, temperature-sensitive species were identified using t-tests. This generated warm and cool classes exhibiting trends in relative flux similar to those of the water mass groups. Both total nux and relative fluxes of water mass groups relate to low-frequency, decadal-scale temperature fluctuations, but not strongly to El Nino-Southern Oscillation events. Generally, fluxes of species from different water masses covary suggesting changing carrying capacities and productivity through time, while the consistent inverse relationship in relative fluxes indicate variability in climate. The subtle, decadal-scale changes in assemblages, diversity, and increase in percent warm water-fauna are consistent with a spin-down of the California Current System suggested by other records.