Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Menke, W, Zha Y, Webb SC, Blackman DK.  2015.  Seismic anisotropy indicates ridge-parallel asthenospheric flow beneath the Eastern Lau Spreading Center. Journal of Geophysical Research-Solid Earth. 120:976-992.   10.1002/2014jb011154   AbstractWebsite

Seismic anisotropy beneath the Eastern Lau Spreading Center (ELSC) is investigated using both Rayleigh waves and shear waves, using data from the 2009-2010 ELSC ocean bottom seismograph experiment. Phase velocities of Rayleigh waves determined by ambient noise cross correlation are inverted for azimuthally anisotropic phase velocity maps. Splitting of S waves from five intermediate and deep focus earthquakes was determined by waveform analysis. Taken together, Rayleigh wave and S wave data indicate that significant (similar to 2%) anisotropy extends to at least 300km depth. Both data sets indicate a fast direction aligned within a few degrees of the N10 degrees E striking ELSC and somewhat oblique to the N25 degrees E strike of the neighboring volcanic arc. We therefore describe the fast direction as spreading perpendicular, not convergence perpendicular and interpret it as due to ridge-parallel flow of the asthenosphere. However, the region arcward (east) of the ELSC has the stronger anisotropy, suggesting that the strongest flow gradients may occur in the region between the spreading center and the arc, in contrast to being centered beneath the ELSC. Fluids released from the underlying plate may produce anisotropic hydrous materials, but more importantly lower the viscosity, thus enhancing along-strike flow. Both could contribute to an along-strike fast direction signature. Seafloor spreading diminishes south of the seismic array, ceasing altogether south of latitude 25 degrees S (500km south of the array center), a region dominated by much slower tectonic extension, suggesting that asthenosphere is inflowing from the north to accommodate the increase in asthenospheric volume associated with the seafloor spreading.

Wei, SS, Wiens DA, Zha Y, Plank T, Webb SC, Blackman DK, Dunn RA, Conder JA.  2015.  Seismic evidence of effects of water on melt transport in the Lau back-arc mantle. Nature. 518   10.1038/nature14113   AbstractWebsite

Processes of melt generation and transport beneath back-arc spreading centres are controlled by two endmember mechanisms: decompression melting similar to that at mid-ocean ridges and flux melting resembling that beneath arcs'. The Lau Basin, with an abundance of spreading ridges at different distances from the subduction zone, provides an opportunity to distinguish the effects of these two different melting processes on magma production and crust formation. Here we present constraints on the three-dimensional distribution of partial melt inferred from seismic velocities obtained from Rayleigh wave tomography using land and ocean-bottom seismographs. Low seismic velocities beneath the Central Lau Spreading Centre and the northern Eastern Lau Spreading Centre extend deeper and westwards into the back-arc, suggesting that these spreading centres are fed by melting along upwelling zones from the west, and helping to explain geochemical differences with the Valu Fa Ridge to the south(2), which has no distinct deep low-seismic-velocity anomalies. A region of low S-wave velocity, interpreted as resulting from high melt content, is imaged in the mantle wedge beneath the Central Lau Spreading Centre and the northeastern Lau Basin, even where no active spreading centre currently exists. This low-seismic-velocity anomaly becomes weaker with distance southward along the Eastern Lau Spreading Centre and the Valu Fa Ridge, in contrast to the inferred increase in magmatic productivity(1). We propose that the anomaly variations result from changes in the efficiency of melt extraction, with the decrease in melt to the south correlating with increased fractional melting and higher water content in the magma. Water released from the slab may greatly reduce the melt viscosity(3) or increase grain size(4), or both, thereby facilitating melt transport.