Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Wei, SS, Wiens DA, Zha Y, Plank T, Webb SC, Blackman DK, Dunn RA, Conder JA.  2015.  Seismic evidence of effects of water on melt transport in the Lau back-arc mantle. Nature. 518   10.1038/nature14113   AbstractWebsite

Processes of melt generation and transport beneath back-arc spreading centres are controlled by two endmember mechanisms: decompression melting similar to that at mid-ocean ridges and flux melting resembling that beneath arcs'. The Lau Basin, with an abundance of spreading ridges at different distances from the subduction zone, provides an opportunity to distinguish the effects of these two different melting processes on magma production and crust formation. Here we present constraints on the three-dimensional distribution of partial melt inferred from seismic velocities obtained from Rayleigh wave tomography using land and ocean-bottom seismographs. Low seismic velocities beneath the Central Lau Spreading Centre and the northern Eastern Lau Spreading Centre extend deeper and westwards into the back-arc, suggesting that these spreading centres are fed by melting along upwelling zones from the west, and helping to explain geochemical differences with the Valu Fa Ridge to the south(2), which has no distinct deep low-seismic-velocity anomalies. A region of low S-wave velocity, interpreted as resulting from high melt content, is imaged in the mantle wedge beneath the Central Lau Spreading Centre and the northeastern Lau Basin, even where no active spreading centre currently exists. This low-seismic-velocity anomaly becomes weaker with distance southward along the Eastern Lau Spreading Centre and the Valu Fa Ridge, in contrast to the inferred increase in magmatic productivity(1). We propose that the anomaly variations result from changes in the efficiency of melt extraction, with the decrease in melt to the south correlating with increased fractional melting and higher water content in the magma. Water released from the slab may greatly reduce the melt viscosity(3) or increase grain size(4), or both, thereby facilitating melt transport.

2009
de Groot-Hedlin, C, Blackman DK, Jenkins CS.  2009.  Effects of variability associated with the Antarctic circumpolar current on sound propagation in the ocean. Geophysical Journal International. 176:478-490.   10.1111/j.1365-246X.2008.04007.x   AbstractWebsite

A series of small depth charges was detonated along a transect from New Zealand to Antarctica over a period of 3 days in late December of 2006. The hydroacoustic signals were recorded by a hydrophone deployed near the source and at a sparse network of permanent hydrophone stations operated by the International Monitoring System (IMS), at distances up to 9600 km. Our purpose was to determine how well signal characteristics could be predicted by the World Ocean Atlas 2005 (WOA05) climatological database for sources within the Antarctic circumpolar current (ACC). Waveforms were examined in the 1-100 Hz frequency band, and it was found that for clear transmission paths, the shot signals exceeded the noise only at frequencies above 20-30 Hz. Comparisons of signal spectra for recordings near the source and at the IMS stations show that transmission loss is nearly uniform as a function of frequency. Where recorded signal-to-noise ratios are high, observed and predicted traveltimes and signal dispersion agree to within 2 s under the assumption that propagation is adiabatic and follows a geodesic path. The deflection of the transmission path by abrupt spatial variations in sound speed at the northern ACC boundary is predicted to decrease traveltimes to the IMS stations by several seconds, depending on the path. Acoustic velocities within the ACC are predicted to vary monthly, hence the accuracy of source location estimates based only on arrival times at IMS stations depends on the monthly or seasonal database used to predict traveltimes and on whether we account for path deflection. However, estimates of source locations within the ACC that are based only on observed waveforms at IMS hydrophones are highly dependent on the configuration of the IMS network; a set of shots observed only at an IMS station in the Indian Ocean and another in the South Pacific was located to within 10 km in longitude, but was poorly constrained in latitude. Several sets of shots observed only at IMS hydrophones in the Indian Ocean were constrained to within 55 km in latitude but were poorly constrained in longitude.

2005
van Wijk, JW, Blackman DK.  2005.  Dynamics of continental rift propagation: the end-member modes. Earth and Planetary Science Letters. 229:247-258.   10.1016/j.epsl.2004.10.039   AbstractWebsite

An important aspect of continental rifting is the progressive variation of deformation style along the rift axis during rift propagation. In regions of rift propagation, specifically transition zones from continental rifting to seafloor spreading, it has been observed that contrasting styles of deformation along the axis of rift propagation are bounded by shear zones. The focus of this numerical modeling study is to look at dynamic processes near the tip of a weak zone in continental lithosphere. More specifically, this study explores how modeled rift behavior depends on the value of rheological parameters of the crust. A three-dimensional finite element model is used to simulate lithosphere deformation in an extensional regime. The chosen approach emphasizes understanding the tectonic forces involved in rift propagation. Dependent on plate strength, two end-member modes are distinguished. The stalled rift phase is characterized by absence of rift propagation for a certain amount of time. Extension beyond the edge of the rift tip is no longer localized but occurs over a very wide zone, which requires a buildup of shear stresses near the rift tip and significant intra-plate deformation. This stage represents a situation in which a rift meets a locked zone. Localized deformation changes to distributed deformation in the locked zone, and the two different deformation styles are balanced by a shear zone oriented perpendicular to the trend. In the alternative rift propagation mode, rift propagation is a continuous process when the initial crust is weak. The extension style does not change significantly along the rift axis and lengthening of the rift zone is not accompanied by a buildup of shear stresses. Model predictions address aspects of previously unexplained rift evolution in the Laptev Sea, and its contrast with the tectonic evolution of, for example, the Gulf of Aden and Woodlark Basin. (C) 2004 Elsevier B.V. All rights reserved.

2002
Blackman, DK, Karson JA, Kelley DS, Cann JR, Fruh-Green GL, Gee JS, Hurst SD, John BE, Morgan J, Nooner SL, Ross DK, Schroeder TJ, Williams EA.  2002.  Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30°N): Implications for the evolution of an ultramafic oceanic core complex. Marine Geophysical Research. 23:443-469.   10.1023/b:mari.0000018232.14085.75   AbstractWebsite

The oceanic core complex comprising Atlantis Massif was formed within the past 1.5-2 Myr at the intersection of the Mid-Atlantic Ridge, 30degrees N, and the Atlantis Transform Fault. The corrugated, striated central dome prominently displays morphologic and geophysical characteristics representative of an ultramafic core complex exposed via long-lived detachment faulting. Sparse volcanic features on the massif's central dome indicate that minor volcanics have penetrated the inferred footwall, which geophysical data indicates is composed predominantly of variably serpentinized peridotite. In contrast, the hanging wall to the east of the central dome is comprised of volcanic rock. The southern part of the massif has experienced the greatest uplift, shoaling to less than 700 m below sea level, and the coarsely striated surface there extends eastward to the top of the median valley wall. Steep landslide embayments along the south face of the massif expose cross sections through the core complex. Almost all of the submersible and dredge samples from this area are deformed, altered peridotite and lesser gabbro. Intense serpentinization within the south wall has likely contributed to the uplift of the southern ridge and promoted the development of the Lost City Hydrothermal Field near the summit. Differences in the distribution with depth of brittle deformation observed in microstructural analyses of outcrop samples suggest that low-temperature strain, such as would be associated with a major detachment fault, is concentrated within several tens of meters of the domal surface. However, submersible and camera imagery show that deformation is widespread along the southern face of the massif, indicating that a series of faults, rather than a single detachment, accommodated the uplift and evolution of this oceanic core complex.