Export 96 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Agnew, DC.  1986.  Detailed Analysis of Tide-Gauge Data - A Case-History. Marine Geodesy. 10:231-255. AbstractWebsite
Bock, Y, Agnew DC, Fang P, Genrich JF, Hager BH, Herring TA, Hudnut KW, King RW, Larsen S, Minster JB, Stark K, Wdowinski S, Wyatt FK.  1993.  Detection of Crustal Deformation from the Landers Earthquake Sequence Using Continuous Geodetic Measurements. Nature. 361:337-340.   10.1038/361337a0   AbstractWebsite

THE measurement of crustal motions in tectonically active regions is being performed increasingly by the satellite-based Global Positioning System (GPS)1,2, which offers considerable advantages over conventional geodetic techniques3,4. Continuously operating GPS arrays with ground-based receivers spaced tens of kilometres apart have been established in central Japan5,6 and southern California to monitor the spatial and temporal details of crustal deformation. Here we report the first measurements for a major earthquake by a continuously operating GPS network, the Permanent GPS Geodetic Array (PGGA)7-9 in southern California. The Landers (magnitude M(w) of 7.3) and Big Bear (M(w) 6.2) earthquakes of 28 June 1992 were monitored by daily observations. Ten weeks of measurements, centred on the earthquake events, indicate significant coseismic motion at all PGGA sites, significant post-seismic motion at one site for two weeks after the earthquakes, and no significant preseismic motion. These measurements demonstrate the potential of GPS monitoring for precise detection of precursory and aftershock seismic deformation in the near and far field.

Barbour, AJ, Agnew DC.  2012.  Detection of Seismic Signals Using Seismometers and Strainmeters. Bulletin of the Seismological Society of America. 102:2484-2490.   10.1785/0120110298   AbstractWebsite

Using data from borehole and long-base strainmeters and from borehole and surface seismometers, we compare the seismic-wave detection capability of strainmeters and seismometers. We use noise spectra to determine the relative signal-to-noise ratios (SNRs) on different sensors, as a function of the phase velocity and frequency of a signal. For the instruments we analyze, signals with frequencies from 10(-3) to 10 Hz and phase velocities typical of (or higher than) surface and body waves will have lower SNRs on the strainmeters than on broadband seismometers. At frequencies from 0.1 to 10 Hz the borehole (short-period) seismometers have better SNRs than strainmeters for typical phase velocities; at lower frequencies strainmeter data signals would have higher SNRs.

Agnew, DC, Sieh KE.  1978.  Documentary Study of Felt Effects of Great California Earthquake of 1857. Bulletin of the Seismological Society of America. 68:1717-1729. AbstractWebsite
Agnew, DC, Wyatt FK.  2014.  Dynamic strains at regional and teleseismic distances. Bulletin of the Seismological Society of America. 104:1846-1859.   10.1785/0120140007   AbstractWebsite

We develop formulas for the size of dynamic strains caused by seismic waves from an earthquake of given magnitude and distance. These formulas include peak strain, peak dissipated power, and total dissipated energy, and they are applicable at regional and teleseismic distances. The formulas are fits to data from 89 large (6.5 <= M-w <= 9.0) shallow earthquakes, with source distances between 500 and 16,000 km, recorded between 1977 and 2013 by three long-base laser strainmeters at Pinon Flat Observatory in southern California; these strainmeters provide uniquely well-calibrated measurements of tensor strain. The residuals to the fits suggest that strain values can usually be predicted to within a factor of 2. These data also show that the strain tensor can be substantially different from that expected for plane waves: in particular, the extension perpendicular to the back azimuth, which should be zero, is always 20% or more of the extension along that azimuth. How much the strains resemble those for plane waves depends on their path, perhaps because inhomogeneities along different paths produce different amounts of multipathing. The observed strains are systematically 10%-30% larger at nearby laser strainmeter sites in the Salton trough, suggesting local amplification from inhomogeneous crustal structure.

Owen, S, Anderson G, Agnew DC, Johnson H, Hurst K, Reilinger R, Shen ZK, Svarc J, Baker T.  2002.  Early postseismic deformation from the 16 October 1999 M-w 7.1 Hector Mine, California, earthquake as measured by survey-mode GPS. Bulletin of the Seismological Society of America. 92:1423-1432.   10.1785/0120000930   AbstractWebsite

The 16 October 1999 (M-w 7.1) Hector Mine earthquake was the largest earthquake in California since the 1992 (M-w 7.3) Landers event. The Hector Mine earthquake occurred in the eastern Mojave Desert, where the density of permanent Global Positioning System (GPS) stations is relatively low. Since the earthquake, groups from the United States Geological Survey, University of Southern California, University of California, Los Angeles, University of California, San Diego, and Massachusetts Institute of Technology have made postseismic survey-mode observations to increase the spatial coverage of deformation measurements. A total of 55 sites were surveyed, with markers from a few meters to 100 km from the surface rupture. We present velocity estimates for the 32 sites that had enough repeated observations between 17 October 1999 and 26 March 2000 to provide reliable results; these survey-mode data complement the temporal and spatial coverage provided by newly installed Southern California Integrated Geodetic Network permanent GPS stations and future Interferometric Synthetic Aperture Radar postseismic results. We then use the postseismic velocity estimates to compute a simple afterslip model. Results of inversions show that the observed velocities are consistent with deep afterslip occuring underneath the coseismic rupture area.

Agnew, DC.  2007.  Earth Tides. Treatise on Geophysics and Geodesy. ( Herring TA, Ed.).:163-195., New York: Elsevier Abstract
Agnew, D. C; Legg, SM; C.  1979.  Earthquake history of San Diego. Earthquake and Other perils: San Diego region. ( Abbott PL, Elliott WJ, Eds.).:123-138., San Diego: San Diego Association of Geologists Abstract
Agnew, DC, Ellsworth WL.  1991.  Earthquake Prediction and Long-Term Hazard Assessment. Reviews of Geophysics. 29:877-889. AbstractWebsite
Johnson, HO, Agnew DC, Hudnut K.  1994.  Extremal Bounds on Earthquake Movement from Geodetic Data - Application to the Landers Earthquake. Bulletin of the Seismological Society of America. 84:660-667. AbstractWebsite

We present a technique to place quantifiable bounds on the moment of an earthquake from geodetic data, assuming known fault geometry. Application of this technique to the 1992 Landers earthquake shows that the moment must have been between 0.84 and 1.15 x 10(20) Nm with 90% confidence (M 7.25 to 7.34). We also find that to satisfy the data to this same level of confidence, the slip on the fault must have exceeded 7 m in at least one location, in good agreement with field mapping of the surface rupture.

Jones, G, Hilde T, Sharman G, Agnew D.  1979.  Fault patterns in outer trench wals and their tectonic significance. Journal of Physical Earth. 26:S85-S101. Abstract
Agnew, DC, Larson KM.  2007.  Finding the repeat times of the GPS constellation. Gps Solutions. 11:71-76.   10.1007/s10291-006-0038-4   AbstractWebsite

Single-epoch estimates of position using GPS are improved by removing multipath signals, which repeat when the GPS constellation does. We present two programs for finding this repeat time, one using the orbital period and the other the topocentric positions of the satellites. Both methods show that the repeat time is variable across the constellation, at the few-second level for most satellites, but with a few showing much different values. The repeat time for topocentric positions, which we term the aspect repeat time, averages 247 s less than a day, with fluctuations through the day that may be as much as 2.5 s at high latitudes.

Agnew, DC.  2005.  GHAM: A compact global geocode suitable for sorting. Computers & Geosciences. 31:1042-1047.   10.1016/j.cageo.2005.02.007   AbstractWebsite

The GHAM code is a technique for labeling geographic locations based on their positions. It defines addresses for equal-area cells bounded by constant latitude and longitude, with arbitrarily fine precision. The cell codes are defined by applying Morton ordering to a recursive division into a 16 by 16 grid, with the resulting numbers encoded into letter-number pairs. A lexical sort of lists of points so labeled will bring near neighbors (usually) close together; tests on a variety of global datasets show that in most cases the actual closest point is adjacent in the list 50% of the time, and within 5 entries 80% of the time. (C) 2005 Elsevier Ltd. All rights reserved.

Dixon, T, Blewitt G, Larson K, Agnew D, Hager B, Kroger P, Krumega L, Strange W.  1990.  GPS measurements of regional deformation in southern California. EOS Trans. AGU. 71:1051-1053,1056. Abstract
Agnew, D.  1998.  Gravity since 1800. Sciences of the Earth: An Encyclopedia of places, People and Phenomenon. ( Good G, Ed.).:403-406.: Garland Publishing Abstract
Gonzalez-Garcia, JJ, Prawirodirdjo L, Bock Y, Agnew D.  2003.  Guadalupe Island, Mexico as a new constraint for Pacific plate motion. Geophysical Research Letters. 30   10.1029/2003gl017732   AbstractWebsite

[1] We use GPS data collected on Isla de Guadalupe and in northern Baja California, Mexico, to estimate site velocities relative to Pacific plate motion. The velocities of all three geodetic monuments on Guadalupe fit a rigid Pacific plate model with residuals of 1 mm/yr. Using the Guadalupe data and data from five IGS stations on the Pacific plate ( CHAT, KOKB, KWJ1, MKEA, and THTI) we estimate an angular velocity for this plate that is consistent with other recently-published estimates. Our results indicate that Isla de Guadalupe lies on the Pacific plate, and that GPS data collection on the island usefully constrains Pacific plate motion and rigidity.

Agnew, DC.  2002.  History of Seismology. IASPEI international handbook of earthwuake engineering seismology. ( Lee WHK, Ed.).:3-13.: Academic Press Abstract
Agnew, D.  1991.  How complete is the pre-instrumental record of earthquakes in southern California? Environmental perils, San Diego Region. ( Abbott PL, Elliott WJ, Eds.).:75-88., [San Diego, Calif.]: Published for the Geological Society of America Annual Meeting by the San Diego Association of Geologists Abstract
King, NE, Agnew DC.  1991.  How Large is the Retrograde Annual Wobble. Geophysical Research Letters. 18:1735-1738.   10.1029/91gl01882   AbstractWebsite

We compare recent measurements of polar motion (wobble) made by space-geodetic methods with older optical measurements. Multitaper spectra of these data show that the retrograde (clockwise) annual wobble is much larger in the older data than the newer data, implying systematic errors in the older techniques. Two additional analyses show evidence for a small retrograde motion in the newer data, which appears to be consistent between data types. This implies that the excitation of the retrograde wobble must be about half of the prograde excitation. None of the available estimates of the excitation shows full agreement with these observations.

Agnew, DC.  2018.  An improbable observation of the diurnal core resonance. Pure and Applied Geophysics. 175:1599-1609.   10.1007/s00024-017-1522-1   AbstractWebsite

The resonance associated with the ellipticity of the core-mantle boundary is usually measured with observations of either the Earth's nutations, or of tidal gravity, strain, or tilt. But, improbably, it can also be seen in a dataset collected and processed with older and simpler technologies: the harmonic constants for the ocean tides. One effect of the resonance is to decrease the ratio of the amplitude of the constituent to the amplitude of the constituent to 0.96 of the ratio in the equilibrium tidal potential. The compilation of ocean-tide harmonic constants prepared by the International Hydrographic Bureau between 1930 and 1980 shows considerable scatter in this ratio; however, if problematic stations and regions are removed, this dataset clearly shows a decreased ratio. While these data apply only a weak constraint to the frequency of the resonance, they also show that the effect could have been observed long before it actually was.

Rojstaczer, S, Agnew DC.  1989.  The Influence of Formation Material Properties on the Response of Water Levels in Wells to Earth Tides and Atmospheric Loading. Journal of Geophysical Research-Solid Earth and Planets. 94:12403-12411.   10.1029/JB094iB09p12403   AbstractWebsite

The water level in an open well can change in response to deformation of the surrounding material, either because of applied strains (tidal or tectonic) or surface loading by atmospheric pressure changes. Under conditions of no vertical fluid flow and negligible well bore storage (static-confined conditions), the sensitivities to these effects depend on the elastic properties and porosity which characterize the surrounding medium. For a poroelastic medium, high sensitivity to applied areal strains occurs for low porosity, while high sensitivity to atmospheric loading occurs for high porosity; both increase with decreasing compressibility of the solid matrix. These material properties also influence vertical fluid flow induced by areally extensive deformation and can be used to define two types of hydraulic diffusivity which govern pressure diffusion, one for applied strain and one for surface loading. The hydraulic diffusivity which governs pressure diffusion in response to surface loading is slightly smaller than that which governs fluid flow in response to applied strain. Given the static-confined response of a water well to atmospheric loading and Earth tides, the in situ drained matrix compressibility and porosity (and hence the one-dimensional specific storage) can be estimated. Analysis of the static-confined response of five wells to atmospheric loading and Earth tides gives generally reasonable estimates for material properties.

Wang, TH, Cochran ES, Agnew D, Oglesby DD.  2013.  Infrequent triggering of tremor along the San Jacinto Fault near Anza, California. Bulletin of the Seismological Society of America. 103:2482-2497.   10.1785/0120120284   AbstractWebsite

We examine the conditions necessary to trigger tremor along the San Jacinto fault (SJF) near Anza, California, where previous studies suggest triggered tremor occurs, but observations are sparse. We investigate the stress required to trigger tremor using continuous broadband seismograms from 11 stations located near Anza, California. We examine 44 M-w >= 7.4 teleseismic events between 2001 and 2011; these events occur at a wide range of back azimuths and hypocentral distances. In addition, we included one smaller-magnitude, regional event, the 2009 M-w 6.5 Gulf of California earthquake, because it induced extremely high strains at Anza. We find the only episode of triggered tremor occurred during the 3 November 2002 M-w 7.8 Denali earthquake. The tremor episode lasted 300 s, was composed of 12 tremor bursts, and was located along SJF at the northwestern edge of the Anza gap at approximately 13 km depth. The tremor episode started at the Love-wave arrival, when surface-wave particle motions are primarily in the transverse direction. We find that the Denali earthquake induced the second highest stress (similar to 35 kPa) among the 44 teleseismic events and 1 regional event. The dominant period of the Denali surface wave was 22.8 s, at the lower end of the range observed for all events (20-40 s), similar to periods shown to trigger tremor in other locations. The surface waves from the 2009 M-w 6.5 Gulf of California earthquake had the highest observed strain, yet a much shorter dominant period of 10 s and did not trigger tremor. This result suggests that not only the amplitude of the induced strain, but also the period of the incoming surface wave, may control triggering of tremors near Anza. In addition, we find that the transient-shear stress (17-35 kPa) required to trigger tremor along the SJF at Anza is distinctly higher than what has been reported for the well-studied San Andreas fault.

Agnew, D.  1998.  Instruments, Gravity. Sciences of the Earth: An Encyclopedia of places, People and Phenomenon. ( Good G, Ed.).:453-455.: Garland Publishing Abstract
Agnew, D, Berger J, Buland R, Farrell W.  1976.  International deployment of accelerometers: a network for very long period seismology. EOS Trans. AGU. 57:171-181. Abstract