Publications

Export 5 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q [R] S T U V W X Y Z   [Show ALL]
R
Agnew, DC.  2013.  Realistic Simulations of Geodetic Network Data: The Fakenet Package. Seismological Research Letters. 84:426-432.   10.1785/0220120185   AbstractWebsite
n/a
Gomberg, J, Wech A, Creager K, Obara K, Agnew D.  2016.  Reconsidering earthquake scaling. Geophysical Research Letters. 43:6243-6251.   10.1002/2016gl069967   AbstractWebsite

The relationship (scaling) between scalar moment, M-0, and duration, T, potentially provides key constraints on the physics governing fault slip. The prevailing interpretation of M-0-T observations proposes different scaling for fast (earthquakes) and slow (mostly aseismic) slip populations and thus fundamentally different driving mechanisms. We show that a single model of slip events within bounded slip zones may explain nearly all fast and slow slip M-0-T observations, and both slip populations have a change in scaling, where the slip area growth changes from 2-D when too small to sense the boundaries to 1-D when large enough to be bounded. We present new fast and slow slip M-0-T observations that sample the change in scaling in each population, which are consistent with our interpretation. We suggest that a continuous but bimodal distribution of slip modes exists and M-0-T observations alone may not imply a fundamental difference between fast and slow slip.

Rolandone, F, Burgmann R, Agnew DC, Johanson IA, Templeton DC, d'Alessio MA, Titus SJ, DeMets C, Tikoff B.  2009.  Reply to comment by J. C. Savage on "Aseismic slip and fault-normal strain along the creeping section of the San Andreas Fault''. Geophysical Research Letters. 36   10.1029/2009gl039167   AbstractWebsite
n/a
Agnew, DC.  2004.  Robert Fitzroy and the myth of the 'Marsden Square': Transatlantic rivalries in early marine meteorology. Notes and Records of the Royal Society of London. 58:21-46.   10.1098/rsnr.2003.0223   AbstractWebsite

Marine data (especially in meteorology) are often grouped geographically using a set of numbered 10degrees latitude-longitude squares known as Marsden squares, which are usually attributed to William Marsden, Secretary of the Admiralty (and Vice-President of The Royal Society), who supposedly invented them early in the nineteenth century. Available records suggest that this system was in fact probably invented by Robert FitzRoy soon after his appointment as head of the British Meteorological Office in 1854. FitzRoy felt that early English work in marine meteorology was being ignored, notably by the American Matthew Fontaine Maury, who had pioneered the collecting of marine meteorological data from ship's logs. A desire to undo this wrong led FitzRoy to emphasize earlier (though abortive) British projects by A.B. Becher (in 1831) and by Marsden (probably in the 1780s), both of which involved grouping marine data geographically, though only over limited areas. FitzRoy's treatment of this earlier work seems to have created, much later, the belief that Marsden had invented the system of 10degrees squares. Given both Maury's and FitzRoy's desire to demonstrate priority in this field, it is ironic that the first clear proposal to collect and group data from ship's logs was made by the American (and British) natural philosopher Isaac Greenwood in 1728.

Agnew, DC.  1989.  Robust Pilot Spectrum Estimation for the Quality-Control of Digital Seismic Data. Bulletin of the Seismological Society of America. 79:180-188. AbstractWebsite
n/a