Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Inbal, A, Cristea-Platon T, Ampuero JP, Hillers G, Agnew D, Hough SE.  2018.  Sources of long-range anthropogenic noise in Southern California and implications for tectonic tremor detection. Bulletin of the Seismological Society of America. 108:3511-3527.   10.1785/0120180130   AbstractWebsite

We study anthropogenic noise sources seen on seismic recordings along the central section of the San Jacinto fault near Anza, southern California. The strongest signals are caused by freight trains passing through the Coachella Valley north of Anza. Train-induced transients are observed at distances of up to 50 km from the railway, with durations of up to 20 min, and spectra that are peaked between 3 and 5 Hz. Additionally, truck traffic through the Coachella Valley generates a sustained hum with a similar spectral signature as the train transients but with lower amplitude. We also find that wind turbine activity in northern Baja California introduces a seasonal modulation of 1- to 5-Hz energy across the Anza network. We show that the observed train-generated transients can be used to constrain shallow attenuation structure at Anza. Using the results from this study as well as available borehole data, we further evaluate the performance of approaches that have been used to detect nonvolcanic tremor at Anza. We conclude that signals previously identified as spontaneous tremor (Hutchison and Ghosh, 2017) were probably generated by other nontectonic sources such as trains.

Nikolaidis, RM, Bock Y, de Jonge PJ, Shearer P, Agnew DC, vanDomselaar M.  2001.  Seismic wave observations with the Global Positioning System. Journal of Geophysical Research-Solid Earth. 106:21897-21916.   10.1029/2001jb000329   AbstractWebsite

We describe the direct measurement of ground displacement caused by the Hector Mine earthquake in southern California (M-w 7.1, October 16, 1999). We use a new method of instantaneous positioning, which estimates site coordinates from only a single epoch of Global Positioning System (GPS) data, to measure dynamic as well as static displacements at 24 stations of the Southern California Integrated GPS Network (SCIGN), with epicentral distances from 50 to 200 km. For sites outside the Los Angeles basin the observed displacements are well predicted by an elastic half-space model with a point shear dislocation; within the sedimentary basin we observe large displacements with amplitudes up to several centimeters that last as long as 3-4 min. Since we resolve the GPS phase ambiguities and determine site coordinates independently at each epoch, the GPS solution rate is the same as the receiver sampling rate. For the SCIGN data this is 0.033 Hz (once per 30 s), though sample rates up to 2 Hz are possible with the SCIGN receivers. Since the GPS phase data are largely uncorrelated at I s, a higher sampling rate would offer improved temporal resolution of ground displacement, so that in combination with inertial seismic data, instantaneous GPS positioning would in many cases significantly increase the observable frequency band for strong ground motions.