Publications

Export 3 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
F
Fialko, Y, Simons M, Agnew D.  2001.  The complete (3-D) surface displacement field in the epicentral area of the 1999 M(w)7.1 Hector Mine earthquake, California, from space geodetic observations. Geophysical Research Letters. 28:3063-3066.   10.1029/2001gl013174   AbstractWebsite

We use Interferometric Synthetic Aperture Radar (InSAR) data to derive continuous maps for three orthogonal components of the co-seismic surface displacement field due to the 1999 M-w 7.1 Hector Mine earthquake in southern California. Vertical and horizontal displacements are both predominantly antisymmetric with respect to the fault plane, consistent with predictions of linear elastic models of deformation for a strike-slip fault. Some deviations from symmetry apparent in the surface displacement data may result from complexity in the fault geometry.

Fialko, Y, Sandwell D, Agnew D, Simons M, Shearer P, Minster B.  2002.  Deformation on nearby faults induced by the 1999 Hector Mine earthquake. Science. 297:1858-1862.   10.1126/science.1074671   AbstractWebsite

Interferometric Synthetic Aperture Radar observations of surface deformation due to the 1999 Hector Mine earthquake reveal motion on several nearby faults of the eastern California shear zone. We document both vertical and horizontal displacements of several millimeters to several centimeters across kilometer-wide zones centered on pre-existing faults. Portions of some faults experienced retrograde (that is, opposite to their long-term geologic slip) motion during or shortly after the earthquake. The observed deformation likely represents elastic response of compliant fault zones to the permanent co-seismic stress changes. The induced fault displacements imply decreases in the effective shear modulus within the kilometer-wide fault zones, indicating that the latter are mechanically distinct from the ambient crustal rocks.

Feigl, KL, Agnew DC, Bock Y, Dong D, Donnellan A, Hager BH, Herring TA, Jackson DD, Jordan TH, King RW, Larsen S, Larson KM, Murray MH, Shen ZK, Webb FH.  1993.  Space Geodetic Measurement of Crustal Deformation in Central and Southern California, 1984-1992. Journal of Geophysical Research-Solid Earth. 98:21677-21712.   10.1029/93jb02405   AbstractWebsite

We estimate the velocity field in central and southern California using Global Positioning System (GPS) observations from 1986 to 1992 and very long baseline interferometry (VLBI) observations from 1984 to 1991. OUT core network includes 12 GPS sites spaced approximately 50 km apart, mostly in the western Transverse Ranges and the coastal Borderlands. The precision and accuracy of the relative horizontal velocities estimated for these core stations are adequately described by a 95% confidence ellipse with a semiminor axis of approximately 2 mm/yr oriented roughly north-south, and a semimajor axis of approximately 3 mm/yr oriented east-west. For other stations, occupied fewer than 5 times, or occupied during experiments with poor tracking geometries, the uncertainty is larger. These uncertainties are calibrated by analyzing the scatter in three types of comparisons: (1) multiple measurements of relative position (''repeatability''), (2) independent velocity estimates from separate analyses of the GPS and VLBI data, and (3) rates of change in baseline length estimated from the joint GPS+VLBI solution and from a comparison of GPS with trilateration. The dominant tectonic signature in the velocity field is shear deformation associated with the San Andreas and Garlock faults, which we model as resulting from slip below a given locking depth. Removing the effects of this simple model from the observed velocity field reveals residual deformation that is not attributable to the San Andreas fault. Baselines spanning the eastern Santa Barbara Channel, the Ventura basin, the Los Angeles basin, and the Santa Maria Fold and Thrust Belt are shortening at rates of up to 5 +/- 1, 5 +/- 1, 5 +/- 1, and 2 +/- 1 mm/yr, respectively. North of the Big Bend, some compression normal to the trace of the San Andreas fault can be resolved on both sides of the fault. The rates of rotation about vertical axes in the residual geodetic velocity field differ by up to a factor of 2 from those inferred from paleomagnetic declinations. Our estimates indicate that the ''San Andreas discrepancy'' can be resolved to within the 3 mm/yr uncertainties by accounting for deformation in California between Vandenberg (near Point Conception) and the westernmost Basin and Range. Strain accumulation of 1-2 mm/yr on structures offshore of Vandenberg is also allowed by the uncertainties. South of the Transverse Ranges, the deformation budget must include 5 mm/yr between the offshore islands and the mainland.