Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
Agee, SJ, Lyons DC, Weisblat DA.  2006.  Maternal expression of a NANOS homolog is required for early development of the leech Helobdella robusta. Developmental Biology. 298:1-11.   10.1016/j.ydbio.2006.04.473   AbstractWebsite

The gene nanos (nos) is a maternal posterior group gene required for normal development of abdominal segments and the germ line in Drosophila. Expression of nos-related genes is associated with the germ line in a broad variety of other taxa, including the leech Helobdella robusta, where zygotically expressed Hro-nos appears to be associated with primordial germ cells. The function of maternally inherited Hro-nos transcripts remains to be determined, however. Here, the function of maternal Hro-nos is examined using an antisense morpholino (MO) knockdown strategy, as confirmed by immunostaining and western blot analysis. HRO-NOS knockdown embryos exhibit abnormalities in the distribution of micromeres during cleavage. Subsequently, their germinal bands are positioned abnormally with respect to the embryonic midline and the micromere cap, epiboly fails, and the HRO-NOS knockdown embryos die. This lethality can be rescued by injection of mRNA encoding an eGFP::HRO-NOS fusion protein. HRO-NOS knockdown embryos make their normal complements of mesodermal and ectodermal teloblasts, and the progeny of these teloblasts segregate into distinct mesodermal and ectodermal layers. These results suggest that maternal Hro-nos is required for embryonic development. However, contrary to previous suggestions, maternal inherited Hro-nos does not appear necessary for ectoderm specification. (c) 2006 Elsevier Inc. All rights reserved.

Henry, JQ, Lyons DC.  2016.  Molluscan models: Crepidula fornicata. Current Opinion in Genetics & Development. 39:138-148.   10.1016/j.gde.2016.05.021   AbstractWebsite

Gastropod snails in the genus Crepidula have emerged as model systems for studying a metazoan super clade, the Spiralia. Recent work on one species in particular, Crepidula fornicata, has produced high-resolution cell lineage fate maps, details of morphogenetic events during gastrulation, key insights into the molecular underpinnings of early development, and the first demonstration of CRISPR/Cas9 genome editing in the Spiralia. Furthermore, invasive species of Crepidula are a significant ecological threat, while one of these, C. fornicata, is also being harvested for food. This review highlights progress towards developing these animals as models for evolutionary, developmental, and ecological studies. Such studies have contributed greatly to our understanding of biology in a major clade of bilaterians. This information may also help us to control and cultivate these snails.

Lyons, DC, Perry KJ, Henry JQ.  2017.  Morphogenesis along the animal-vegetal axis: fates of primary quartet micromere daughters in the gastropod Crepidula fornicata. Bmc Evolutionary Biology. 17   10.1186/s12862-017-1057-1   AbstractWebsite

Background: The Spiralia are a large, morphologically diverse group of protostomes (e.g. molluscs, annelids, nemerteans) that share a homologous mode of early development called spiral cleavage. One of the most highly-conserved features of spiralian development is the contribution of the primary quartet cells, 1a-1d, to the anterior region of the embryo (including the brain, eyes, and the anterior ciliary band, called the prototroch). Yet, very few studies have analyzed the ultimate fates of primary quartet sub-lineages, or examined the morphogenetic events that take place in the anterior region of the embryo. Results: This study focuses on the caenogastropod slipper snail, Crepidula fornicata, a model for molluscan developmental biology. Through direct lineage tracing of primary quartet daughter cells, and examination of these cells during gastrulation and organogenesis stages, we uncovered behaviors never described before in a spiralian. For the first time, we show that the 1a(2)-1d(2) cells do not contribute to the prototroch (as they do in other species) and are ultimately lost before hatching. During gastrulation and anterior-posterior axial elongation stages, these cells cleavage-arrest and spread dramatically, contributing to a thin provisional epidermis on the dorsal side of the embryo. This spreading is coupled with the displacement of the animal pole, and other pretrochal cells, closer to the ventrally-positioned mouth, and the vegetal pole. Conclusions: This is the first study to document the behavior and fate of primary quartet sub-lineages among molluscs. We speculate that the function of 1a(2)-1d(2) cells (in addition to two cells derived from 1d(12), and the 2b lineage) is to serve as a provisional epithelium that allows for anterior displacement of the other progeny of the primary quartet towards the anterior-ventral side of the embryo. These data support a new and novel mechanism for axial bending, distinct from canonical models in which axial bending is suggested to be driven primarily by differential proliferation of posterior dorsal cells. These data suggest also that examining sub-lineages in other spiralians will reveal greater variation than previously assumed.

Lyons, DC, Kaltenbach SL, McClay DR.  2012.  Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states. Wiley Interdisciplinary Reviews-Developmental Biology. 1:231-252.   10.1002/wdev.18   AbstractWebsite

Gastrulation in the sea urchin begins with ingression of the primary mesenchyme cells (PMCs) at the vegetal pole of the embryo. After entering the blastocoel the PMCs migrate, form a syncitium, and synthesize the skeleton of the embryo. Several hours after the PMCs ingress the vegetal plate buckles to initiate invagination of the archenteron. That morphogenetic process occurs in several steps. The nonskeletogenic cells produce the initial inbending of the vegetal plate. Endoderm cells then rearrange and extend the length of the gut across the blastocoel to a target near the animal pole. Finally, cells that will form part of the midgut and hindgut are added to complete gastrulation. Later, the stomodeum invaginates from the oral ectoderm and fuses with the foregut to complete the archenteron. In advance of, and during these morphogenetic events, an increasingly complex input of transcription factors controls the specification and the cell biological events that conduct the gastrulation movements. (C) 2011 Wiley Periodicals, Inc.