Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Lyons, DC, Perry KJ, Henry JQ.  2015.  Spiralian gastrulation: germ layer formation, morphogenesis, and fate of the blastopore in the slipper snail Crepidula fornicata. Evodevo. 6   10.1186/s13227-015-0019-1   AbstractWebsite

Background: Gastrulation is a critical step in bilaterian development, directly linked to the segregation of germ layers, establishment of axes, and emergence of the through-gut. Theories about the evolution of gastrulation often concern the fate of the blastopore (site of endomesoderm internalization), which varies widely in a major branch of bilaterians, the Spiralia. In this group, the blastopore has been said to become the mouth, the anus, both, or neither. Different developmental explanations for this variation exist, yet no modern lineage tracing study has ever correlated the position of cells surrounding the blastopore with their contribution to tissues of the mouth, foregut, and anus in a spiralian. This is the first study to do so, using the gastropod Crepidula fornicata. Results: Crepidula gastrulation occurs by epiboly: the first through third quartet micromeres form an epithelial animal cap that expands to cover vegetal endomesodermal precursors. Initially, descendants of the second and third quartet micromeres (2a-2d, 3a-3d) occupy a portion of the blastopore lip. As the blastopore narrows, the micromeres' progeny exhibit lineage-specific behaviors that result in certain sublineages leaving the lip's edge. Anteriorly, cells derived from 3a(2) and 3b(2) undergo a unique epithelial-to-mesenchymal transition involving proliferation and a collective movement of cells into the archenteron. These cells make a novel spiralian germ layer, the ectomesoderm. Posteriorly, cells derived from 3c(2) and 3d(2) undergo a form of convergence and extension that involves zippering of cells and their intercalation across the ventral midline. During this process, several of these cells, as well as the 2d clone, become displaced posteriorly, away from the blastopore. Progeny of 2a-2c and 3a-3d make the mouth and foregut, and the blastopore becomes the opening to the mouth. The anus forms days later, as a secondary opening within the 2d(2) clone, and not from the classically described "anal cells", which we identify as the 3c(221) and 3d(221) cells. Conclusions: Our analysis of Crepidula gastrulation constitutes the first description of blastopore lip morphogenesis and fates using lineage tracing and live imaging. These data have profound implications for hypotheses about the evolution of the bilaterian gut and help explain observed variation in blastopore morphogenesis among spiralians.

Lyons, DC, Henry JQ.  2014.  Ins and outs of Spiralian gastrulation. International Journal of Developmental Biology. 58:413-428.   10.1387/ijdb.140151dl   AbstractWebsite

Gastrulation is a critical stage of metazoan development during which endodermal and mesodermal tissues are internalized, and morphogenesis transforms the early embryo into each animal's unique body-plan. While gastrulation has been studied extensively in classic model systems such as flies, worms, and vertebrates, less is known about gastrulation at a mechanistic level in other taxa. Surprisingly, one particularly neglected group constitutes a major branch of animals: the Spiralia. A unique feature of spiralian development is that taxa with diverse adult body-plans, such as annelids, molluscs, nemerteans and platyhelminths all share a highly stereotyped suite of characters during embryogenesis called spiral cleavage.The spiral cleavage program makes it possible to compare distantly related embryos using not only morphological features, and gene expression patterns, but also homologous cell lineages. Having all three criteria available for comparison is especially critical for understanding the evolution of a complex process like gastrulation.Thus studying gastrulation in spiralians is likely to lead to novel insights about the evolution of body-plans, and the evolution of morphogenesis itself. Here we review relevant literature about gastrulation in spiralians and frame questions for future studies. We describe the internalization of the endoderm, endomesoderm and ectomesoderm; where known, we review data on the cellular and molecular control of those processes. We also discuss several morphogenetic events that are tied to gastrulation including: axial elongation, origins of the mouth and anus, and the fate of the blastopore. Since spiral cleavage is ancestral for a major branch of bilaterians, understanding gastrulation in spiralians will contribute more broadly to ongoing debates about animal body-plan divergence, such as: the origin of the through-gut, the emergence of indirect versus direct development, and the evolution of gene-regulatory networks that specify endomesoderm. We emphasize the fact that spiralian gastrulation provides the unique opportunity to connect well-defined embryonic cell lineages to variation in cell fate and cell behavior, making it an exceptional case study for evo-devo.