Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Anderson, CR, Berdalet E, Kudela RM, Cusack CK, Silke J, O'Rourke E, Dugan D, McCammon M, Newton JA, Moore SK, Paige K, Ruberg S, Morrison JR, Kirkpatrick B, Hubbard K, Morell J.  2019.  Scaling up from regional case studies to a global Harmful Algal Bloom observing system. Frontiers in Marine Science. 6   10.3389/fmars.2019.00250   AbstractWebsite

Harmful algal blooms (HABs) produce local impacts in nearly all freshwater and marine systems. They are a problem that occurs globally requiring an integrated and coordinated scientific understanding, leading to regional responses and solutions. Given that these natural phenomena will never be completely eliminated, an improved scientific understanding of HAB dynamics coupled with monitoring and ocean observations, facilitates new prediction and prevention strategies. Regional efforts are underway worldwide to create state-of-the-art HAB monitoring and forecasting tools, vulnerability assessments, and observing networks. In the United States, these include Alaska, Pacific Northwest, California, Gulf of Mexico, Gulf of Maine, Great Lakes, and the United States Caribbean islands. This paper examines several regional programs in the United States, European Union, and Asia and concludes that there is no one-size-fits-all approach. At the same time, successful programs require strong coordination with stakeholders and institutional sustainability to maintain and reinforce them with new automating technologies, wherever possible, ensuring integration of modeling efforts with multiple regional to national programs. Recommendations for scaling up to a global observing system for HABs can be summarized as follows: (1) advance and improve cost-effective and sustainable HAB forecast systems that address the HAB-risk warning requirements of key end-users at global and regional levels; (2) design programs that leverage and expand regional HAB observing systems to evaluate emerging technologies for Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs) in order to support interregional technology comparisons and regional networks of observing capabilities; (3) fill the essential need for sustained, preferably automated, near real-time information from nearshore and offshore sites situated in HAB transport pathways to provide improved, advanced HAB warnings; (4) merge ecological knowledge and models with existing Earth System Modeling Frameworks to enhance end-to-end capabilities in forecasting and scenario-building; (5) provide seasonal to decadal forecasts to allow governments to plan, adapt to a changing marine environment, and ensure coastal industries are supported and sustained in the years ahead; and (6) support implementation of the recent calls for action by the United Nations Decade 2010 Sustainable Development Goals (SDGs) to develop indicators that are relevant to an effective and global HAB early warning system.

Bograd, SJ, Buil MP, Di Lorenzo E, Castro CG, Schroeder ID, Goericke R, Anderson CR, Benitez-Nelson C, Whitney FA.  2015.  Changes in source waters to the Southern California Bight. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 112:42-52.   10.1016/j.dsr2.2014.04.009   AbstractWebsite

Historical hydrographic data (1984-2012) from the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program and global reanalysis products were used to quantify recent water mass variability off the coast of Southern California. Dissolved oxygen concentrations continued to decline within the lower pycnocline, concurrent with strong increases in nitrate and phosphate that have spatial patterns matching those of dissolved oxygen. Silicic acid also shows an increasing trend in the offshore portion of the region, but has strong and opposing trends in the upper (increasing) and lower-pycnocline (decreasing) within the Southern California Bight. The varying rates of change in the inorganic nutrients yield a more complex pattern of variability in the nutrient ratios, resulting in large decreases in the N:P and Si:N ratios within the Southern California Bight at depths that provide source waters for upwelling. Basin-scale reanalysis products are consistent with low-frequency water mass changes observed off Southern California and suggest that advection of modified source waters is the cause of the variability. The biogeochemical changes described here may have important impacts on the regional ecosystem, including a reduction of viable pelagic habitat and community reorganization. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (