Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Anderson, CR, Kudela RM, Kahru M, Chao Y, Rosenfeld LK, Bahr FL, Anderson DM, Norris TA.  2016.  Initial skill assessment of the California Harmful Algae Risk Mapping (C-HARM) system. Harmful Algae. 59:1-18.   10.1016/j.hal.2016.08.006   AbstractWebsite

Toxic algal events are an annual burden on aquaculture and coastal ecosystems of California. The threat of domoic acid (DA) toxicity to human and wildlife health is the dominant harmful algal bloom (HAB) concern for the region, leading to a strong focus on prediction and mitigation of these blooms and their toxic effects. This paper describes the initial development of the California Harmful Algae Risk Mapping (C-HARM) system that predicts the spatial likelihood of blooms and dangerous levels of DA using a unique blend of numerical models, ecological forecast models of the target group, Pseudo-nitzschia, and satellite ocean color imagery. Data interpolating empirical orthogonal functions (DINEOF) are applied to ocean color imagery to fill in missing data and then used in a multivariate mode with other modeled variables to forecast biogeochemical parameters. Daily predictions (nowcast and forecast maps) are run routinely at the Central and Northern California Ocean Observing System (CeNCOOS) and posted on its public website. Skill assessment of model output for the nowcast data is restricted to nearshore pixels that overlap with routine pier monitoring of HABs in California from 2014 to 2015. Model lead times are best correlated with DA measured with solid phase adsorption toxin tracking (SPATI') and marine mammal strandings from DA toxicosis, suggesting long-term benefits of the HAB predictions to decision making. Over the next three years, the C-HARM application system will be incorporated into the NOAA operational HAB forecasting system and HAB Bulletin. (C) 2016 Elsevier B.V. All rights reserved.

Bograd, SJ, Buil MP, Di Lorenzo E, Castro CG, Schroeder ID, Goericke R, Anderson CR, Benitez-Nelson C, Whitney FA.  2015.  Changes in source waters to the Southern California Bight. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 112:42-52.   10.1016/j.dsr2.2014.04.009   AbstractWebsite

Historical hydrographic data (1984-2012) from the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program and global reanalysis products were used to quantify recent water mass variability off the coast of Southern California. Dissolved oxygen concentrations continued to decline within the lower pycnocline, concurrent with strong increases in nitrate and phosphate that have spatial patterns matching those of dissolved oxygen. Silicic acid also shows an increasing trend in the offshore portion of the region, but has strong and opposing trends in the upper (increasing) and lower-pycnocline (decreasing) within the Southern California Bight. The varying rates of change in the inorganic nutrients yield a more complex pattern of variability in the nutrient ratios, resulting in large decreases in the N:P and Si:N ratios within the Southern California Bight at depths that provide source waters for upwelling. Basin-scale reanalysis products are consistent with low-frequency water mass changes observed off Southern California and suggest that advection of modified source waters is the cause of the variability. The biogeochemical changes described here may have important impacts on the regional ecosystem, including a reduction of viable pelagic habitat and community reorganization. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (