Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Sellanes, J, Quiroga E, Neira C.  2008.  Megafauna community structure and trophic relationships at the recently discovered Concepcion Methane Seep Area, Chile, ~36°S. Ices Journal of Marine Science. 65:1102-1111.   10.1093/icesjms/fsn099   AbstractWebsite

The fauna, community composition, and trophic support of the newly discovered Concepcion Methane Seep Area (CMSA) are compared with those at a nearby non-seep control. The assemblage of chemosymbiotic bivalves is defined by eight species, including the families Lucinidae, Thyasiridae, Solemyidae, and Vesicomyidae. Seep polychaetes are represented by Lamellibrachia sp. and two commensal species of the vesicomyid Calyptogena gallardoi. Although taxonomic analysis is still under way, most of the chemosymbiotic species seem to be endemics. The CMSA is a hotspot for non-seep benthic megafauna too; 101 taxa were present, but most of them are colonists or vagrants (i.e. not endemics of methane seeps). Isotope analysis supported the belief that non-symbiont-bearing species utilize photosynthetically fixed carbon, because they were isotopically distinct from the chemosymbiotic bivalve species present. It is our opinion that, at this site, which underlies one of the most productive coastal upwelling regions of the world, spatial heterogeneity and the availability of hard substratum, generated by the presence of authigenic carbonate crusts, are more important factors in attracting non-seep fauna than the availability of locally produced chemosynthetic food.

Levin, L, Gutierrez D, Rathburn A, Neira C, Sellanes J, Munoz P, Gallardo V, Salamanca M.  2002.  Benthic processes on the Peru margin: a transect across the oxygen minimum zone during the 1997-98 El Nino. Progress in Oceanography. 53:1-27.   10.1016/s0079-6611(02)00022-8   AbstractWebsite

Oxygen minimum zones (OMZs) are widespread features in the most productive regions of the world ocean. A holistic view of benthic responses to OMZ conditions will improve our ability to predict ecosystem-level consequences of climatic trends that influence oxygen availability, such as global warming or ENSO-related events. Four stations off Callao, Peru (-12'S, Station A, 305 m; Station B, 562 m; Station C, 830 nu and Station D, 1210 m) were sampled to examine the influence of the low bottom-water oxygen concentration and high organic-matter availability within the OMZ (O(2) < 0.5 ml L(-1)) on sediments, benthic communities, and bioturbation. Sampling took place during early January 1998, an intense El Ni (n) over tildeo period associated with higher-than-normal levels of O(2) on the shelf and upper slope. Peru slope sediments were highly heterogeneous. Sediment total organic carbon content exceeded 16%, lamination was present below 6 cm depth, and filamentous sulfur bacteria (Thioploca spp.) were present at Station A, (305 m, 0, < 0.02 ml L(-1)). Deeper sites contained phosphorite crusts or pellets and exhibited greater bottom-water oxygenation and lower content and quality of organic matter. X-radiographs and (210)Pb and (234)Th profiles suggested the dominance of lateral transport and bioturbation over pelagic sedimentation at the mid- and lower slope sites. Macrofauna, metazoan meiofauna and foraminifera exhibited coherence of density patterns across stations, with maximal densities (and for macrofauna, reduced diversity) at Station A, where bottom-water oxygen concentration was lowest and sediment labile organic matter content (LOC: sum of protein, carbohydrate and lipid carbon) was greatest. Metazoan and protozoan meiofaunal densities were positively correlated with sediment LOC. The taxa most tolerant of nearly anoxic, organic-rich conditions within the Peru OMZ were calcareous foraminifera, nematodes and gutless phallodrilinid (symbiont-bearing) oligochaetes. Agglutinated foraminifera, harpacticoid copepods, polychaetes and many other macrofaunal taxa increased in relative abundance below the OMZ. During the study (midpoint of the 1997-98 El Ni (n) over tildeo), the upper OMZ boundary exhibited a significant deepening (to 190 m) relative to 'normal', non-El Ni (n) over tildeo conditions (< 100 m), possibly causing a mild, transient oxygenation over the upper slope (200-300 m) and reduction of the organic particle flux to the seabed. Future sampling may determine whether the Peru margin system exhibits dynamic responses to changing ENSO-related conditions. (C) 2002 Elsevier Science Ltd. All rights reserved.