Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2010
Sellanes, J, Neira C, Quiroga E, Teixido N.  2010.  Diversity patterns along and across the Chilean margin: a continental slope encompassing oxygen gradients and methane seep benthic habitats. Marine Ecology-an Evolutionary Perspective. 31:111-124.   10.1111/j.1439-0485.2009.00332.x   AbstractWebsite

In the present study we review datasets available for the Chilean margin to assess the relationship between environmental (or habitat) heterogeneity and benthic diversity. Several factors, such as the presence of different water masses, including the oxygen-deficient Equatorial Sub-surface Waters (ESSW) at the continental shelf and upper slope, and the Antarctic Intermediate Waters (AIW) at mid slope depths appear to control the bathymetric distribution of benthic communities. The presence of methane seeps and an extended oxygen minimum zone (OMZ) add complexity to the benthic distribution patterns observed. All these factors generate environmental heterogeneity, which is predicted to affect the diversity patterns both along and across the Chilean continental margin. The response to these factors differs among different faunal size groups: meio-, macro-, and megafauna. Physiological adaptations to oxygen deficiency and constraints related to body size of each group seem to explain the larger-scale patterns observed, while sediment/habitat heterogeneity (e.g. at water mass boundaries, hardgrounds, biogeochemical patchiness, sediment organic content, grain size) may influence the local fauna diversity patterns.

2000
Gutierrez, D, Gallardo VA, Mayor S, Neira C, Vasquez C, Sellanes J, Rivas M, Soto A, Carrasco F, Baltazar M.  2000.  Effects of dissolved oxygen and fresh organic matter on the bioturbation potential of macrofauna in sublittoral sediments off Central Chile during the 1997/1998 El Nino. Marine Ecology-Progress Series. 202:81-99.   10.3354/meps202081   AbstractWebsite

A study off Concepcion, central Chile, during the 1997/1998 El Nino (EN) revealed that the concentration of dissolved oxygen and the organic content and quality of the sediment control the vertical distribution of macrofauna in the sediment and bioturbation potential. The study area, characterized by organic-rich, silty sediments, lies within the most intense upwelling center off the coast of Chile, and is subject to the seasonal influx of hypoxic subsurface waters. Five stations (28 to 120 m depth) were sampled seasonally. The vertical distribution and integrated biomass and abundance of macrofauna (> 0.5 mm) were determined, as well as the dissolved oxygen content of the bottom water (BWDO) and sediment parameters such as total organic carbon (TOC), the C/N ratio, sulphide content, chi a content, and the thickness of the oxidized zone. Chi a proved to be a good indicator of fresh (high-quality) organic matter. Major components contributing to variation in the macrofauna feeding guilds, bioturbation categories, and their vertical position in the sediment were: (1) the relative bioturbation potential (contribution of bioturbating taxa to the assemblage) and (2) the vertical distribution and ratio of surface-to subsurface deposit-feeders. Higher levels of BWDO and a lower quality of organic matter at the sediment surface tended to provide better conditions for potentially strong bioturbators, while lower BWDO levels and higher-quality organic matter were accompanied by the dominance of tube-dwelling, surface-defecating land hence weakly bioturbating) species. Higher TOC levels and lower-quality organic matter at the surface resulted in deeper vertical distributions of animals and a higher relative abundance of subsurface deposit-feeders. During the study period, BWDO levels increased, while the total organic carbon and the quality of organic matter decreased. These conditions encouraged the vertical penetration of macrofauna into the sediment column and the relatively larger contribution of stronger bioturbators to the assemblage. The most drastic changes in faunal lifestyles and vertical distribution during the 1997/1998 EN were observed within the Bay of Concepcion, an area usually characterized by sulphidic sediments under the conditions of severe seasonal hypoxia or anoxia obtaining during 'normal' (i.e. non-EN) years; and in the deepest shelf site, which usually experiences permanent hypoxia because of the influence of the 'oxygen minimum zone'.