Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2010
Sellanes, J, Neira C, Quiroga E, Teixido N.  2010.  Diversity patterns along and across the Chilean margin: a continental slope encompassing oxygen gradients and methane seep benthic habitats. Marine Ecology-an Evolutionary Perspective. 31:111-124.   10.1111/j.1439-0485.2009.00332.x   AbstractWebsite

In the present study we review datasets available for the Chilean margin to assess the relationship between environmental (or habitat) heterogeneity and benthic diversity. Several factors, such as the presence of different water masses, including the oxygen-deficient Equatorial Sub-surface Waters (ESSW) at the continental shelf and upper slope, and the Antarctic Intermediate Waters (AIW) at mid slope depths appear to control the bathymetric distribution of benthic communities. The presence of methane seeps and an extended oxygen minimum zone (OMZ) add complexity to the benthic distribution patterns observed. All these factors generate environmental heterogeneity, which is predicted to affect the diversity patterns both along and across the Chilean continental margin. The response to these factors differs among different faunal size groups: meio-, macro-, and megafauna. Physiological adaptations to oxygen deficiency and constraints related to body size of each group seem to explain the larger-scale patterns observed, while sediment/habitat heterogeneity (e.g. at water mass boundaries, hardgrounds, biogeochemical patchiness, sediment organic content, grain size) may influence the local fauna diversity patterns.

2009
Rathburn, AE, Levin LA, Tryon M, Gieskes JM, Martin JM, Perez ME, Fodrie FJ, Neira C, Fryer GJ, Mendoza G, McMillan PA, Kluesner J, Adamic J, Ziebis W.  2009.  Geological and biological heterogeneity of the Aleutian margin (1965-4822 m). Progress in Oceanography. 80:22-50.   10.1016/j.pocean.2008.12.002   AbstractWebsite

Geological, biological and biogeochemical characterization of the previously unexplored margin off Unimak Island, Alaska between 1965 and 4822 m water depth was conducted to examine: (1) the geological processes that shaped the margin, (2) the linkages between depth, geomorphology and environmental disturbance in structuring benthic communities of varying size classes and (3) the existence, composition and nutritional sources of methane seep biota on this margin. The study area was mapped and sampled using multibeam sonar, a remotely operated vehicle (ROV) and a towed camera system. Our results provide the first characterization of the Aleutian margin mid and lower slope benthic communities (micro-biota, foraminifera, macrofauna and megafauna), recognizing diverse habitats in a variety of settings. Our investigations also revealed that the geologic feature known as the "Ugamak Slide" is not a slide at all, and could not have resulted from a large 1946 earthquake. However, sediment disturbance appears to be a pervasive feature of this margin. We speculate that the deep-sea occurrence of high densities of Elphidium, typically a shallow-water foraminiferan, results from the influence of sediment redeposition from shallower habitats. Strong representation of cumacean, amphipod and tanaid crustaceans among the Unimak macrofauna may also reflect sediment instability. Although some faunal abundances decline with depth, habitat heterogeneity and disturbance generated by canyons and methane seepage appear to influence abundances of biota in ways that supercede any clear depth gradient in organic matter input. Measures of sediment organic matter and pigment content as well as C and N isotopic signatures were highly heterogeneous, although the availability of organic matter and the abundance of microorganisms in the upper sediment (1-5 cm) were positively correlated. We report the first methane seep on the Aleutian slope in the Unimak region (3263-3285 m), comprised of clam bed, pogonophoran field and carbonate habitats. Seep foraminiferal assemblages were dominated by agglutinated taxa, except for habitats above the seafloor on pogonophoran tubes. Numerous infaunal taxa in clam bed and pogonophoran field sediments and deep-sea "reef' cnidarians (e.g., corals and hydroids) residing on rocks near seepage sites exhibited light organic delta(13)C signatures indicative of chemosynthetic nutritional sources. The extensive geological, biogeochemical and biological heterogeneity as well as disturbance features observed on the Aleutian slope provide an attractive explanation for the exceptionally high biodiversity characteristic of the world's continental margins. (C) 2008 Elsevier Ltd. All rights reserved.

2005
Neira, C, Decraemer W, Backeljau T.  2005.  A new species of Glochinema (Epsilonematidae : Nematoda) from the oxygen minimum zone off Baja California, NE Pacific and phylogenetic relationships at species level within the family. Cahiers De Biologie Marine. 46:105-126. AbstractWebsite

Glochinema spinithorni sp. nov. is described from muddy, bathyal sediments of the oxygen minimum zone (OMZ) of the north eastern Pacific Ocean off Baja California. It is characterized by a rather large body length (over I mm), a large number of body rings (242-282), sexual dimorphism in the number and position of pharyngeal thorns near the head region, cuticular ornamentation with numerous hairy spines and two sets of stronger spines ventrally in the anterior body half, mid-sized spiral amphids, and by the number and arrangement of ambulatory setae and long spicules (over 100 mu m). The finding of a second OMZ Glochinema species with similar morphological characteristics supports the presumption that OMZs function as isolated habitats promoting endemism at low taxonomic levels. Results of phylogenetic analyses at the species level restricted to the Glochinematinae and Keratonematinae suggest that both OMZ species form a monophyletic group. An attempt was made to recognize phylogenetic relationships at species level within the family. The phylogenetic analyses were based upon a data matrix of 96 ingroup taxa and 25 characters. The results support the monophyly of the genera Leptepsilonema, Metepsilonema, Perepsilonema and Polkepsilonema (with or without Pternepsilonema).