Publications

Export 9 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Neira, C, Ingels J, Mendoza G, Hernandez-Lopez E, Levin LA.  2018.  Distribution of meiofauna in bathyal sediments influenced by the oxygen minimum zone off Costa Rica. Frontiers in Marine Science. 5   10.3389/fmars.2018.00448   AbstractWebsite

Ocean deoxygenation has become a topic of increasing concern because of its potential impacts on marine ecosystems, including oxygen minimum zone (OMZ) expansion and subsequent benthic effects. We investigated the influence of oxygen concentration and organic matter (OM) availability on metazoan meiofauna within and below an OMZ in bathyal sediments off Costa Rica, testing the hypothesis that oxygen and OM levels are reflected in meiofaunal community structures and distribution. Mean total densities in our sampling cores (400-1800 m water depth) were highest with 3688 ind. 10 cm(-2) at the OMZ core at 400 m water depth, decreasing rapidly downslope. Nematodes were overall dominant, with a maximum of 99.9% in the OMZ core, followed by copepods (13%), nauplii (4.8%), and polychaetes (3%). Relative copepod and nauplii abundance increased consistently with depth and increasing bottom-water O-2. Meiofaunal composition was significantly different among sites, with lower taxonomic diversity at OMZ sites relative to deeper, oxygenated sites. Vertical distribution patterns within sediments showed that in strongly oxygen-depleted sites less meiofauna was concentrated in the surface sediment than at deeper slope sites. Highest meiofaunal abundance and lowest diversity occurred under lowest oxygen and highest pigment levels, whereas highest diversity occurred under highest oxygen-concentrations and low pigments, as well as high quality of sedimentary pigment (chl a/phaeo) and organic carbon (C/N). The lower meiofaunal diversity, and lower structural and trophic complexity, at oxygen-depleted sites raises concerns about changes in the structure and function of benthic marine ecosystems in the face of OMZ expansions.

2013
Neira, C, King I, Mendoza G, Sellanes J, De Ley P, Levin LA.  2013.  Nematode community structure along a central Chile margin transect influenced by the oxygen minimum zone. Deep Sea Research Part I: Oceanographic Research Papers. 78:1-15.   10.1016/j.dsr.2013.04.002   AbstractWebsite

Nematodes are among the metazoans most tolerant of low-oxygen conditions and play major roles in seafloor ecosystem processes. Nematode communities were studied in sediments off Concepción, Central Chile, spanning the outer shelf within the OMZ (122 m) to the mid-lower continental slope (972 m) beneath the OMZ. The total density and biomass of nematodes (core depth 0–10 cm) ranged from 677 to 2006 ind. 10 cm−2, and 168.4 to 506.5 µg DW 10 cm−2, respectively. Among metazoan meiofaunal taxa, nematodes predominated at all sites both in terms of relative abundance (83.7–99.4%) and biomass (53.8–88.1%), followed by copepods, nauplii and polychaetes. Nematodes were represented by 33 genera distributed among 17 families, with densities greatest at low oxygen sites (122–364 m; ~2000 ind. 10 cm−2). Nematode generic and trophic diversity, and individual biomass were lowest, and Rank 1 dominance was highest, at the most oxygen-depleted site (122 m), despite the fact that the organic carbon content of the sediment was maximal at this depth. At the most oxygenated slope sites (827 and 972 m), all of Wieser's nematode feeding groups were represented. In contrast, at the lowest-oxygen site, only selective deposit (bacterial) feeders (1A) were present, indicating a reduction in trophic complexity. A large percentage of nematodes inhabited subsurface sediment layers (>1 cm). At deeper, more oxygenated sites (827 and 972 m), nematode individual biomass increased downcore, while within the OMZ, nematode biomass was low and remained relatively uniform through the sediment column. The concentration of nematodes in deeper sediment layers, the vertical distribution of the feeding groups, as well as the high nutritional quality of the deeper layers, suggest a differential resource partitioning of the food available, which may reduce interspecific competition.

2006
Arntz, WE, Gallardo VA, Gutierrez D, Isla E, Levin LA, Mendo J, Neira C, Rowe GT, Tarazona J, Wolff M.  2006.  El Niño and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems. Advances in Geosciences. 6:243-265.: European Geosciences Union, c/o E.O.S.T. 5, rue Rene Descartes Strasbourg Cedex 67084 France, [mailto:egu.production@copernicus.org], [URL:http://www.copernicus.org/EGU] AbstractWebsite

To a certain degree, Eastern Boundary Current (EBC) ecosystems are similar: Cold bottom water from moderate depths, rich in nutrients, is transported to the euphotic zone by a combination of trade winds, Coriolis force and Ekman transport. The resultant high primary production fuels a rich secondary production in the upper pelagic and nearshore zones, but where O sub(2) exchange is restricted, it creates oxygen minimum zones (OMZs) at shelf and upper slope (Humboldt and Benguela Current) or slope depths (California Current). These hypoxic zones host a specifically adapted, small macro- and meiofauna together with giant sulphur bacteria that use nitrate to oxydise H sub(2)S. In all EBC, small polychaetes, large nematodes and other opportunistic benthic species have adapted to the hypoxic conditions and co-exist with sulphur bacteria, which seem to be particularly dominant off Peru and Chile. However, a massive reduction of macrobenthos occurs in the core of the OMZ. In the Humboldt Current area the OMZ ranges between <100 and about 600 m, with decreasing thickness in a poleward direction. The OMZ merges into better oxygenated zones towards the deep sea, where large cold-water mega- and macrofauna occupy a dominant role as in the nearshore strip. The Benguela Current OMZ has a similar upper limit but remains shallower. It also hosts giant sulphur bacteria but little is known about the benthic fauna. However, sulphur eruptions and intense hypoxia might preclude the coexistence of significant mega- und macrobenthos. Conversely, off North America the upper limit of the OMZ is considerably deeper (e.g., 500-600 m off California and Oregon), and the lower boundary may exceed 1000m. The properties described are valid for very cold and cold (La Nina and "normal") ENSO conditions with effective upwelling of nutrient-rich bottom water. During warm (El Nino) episodes, warm water masses of low oxygen concentration from oceanic and equatorial regions enter the upwelling zones, bringing a variety of (sub)tropical immigrants. The autochthonous benthic fauna emigrates to deeper water or poleward, or suffers mortality. However, some local macrofaunal species experience important population proliferations, presumably due to improved oxygenation (in the southern hemisphere), higher temperature tolerance, reduced competition or the capability to use different food. Both these negative and positive effects of el Nino influence local artisanal fisheries and the livelihood of coastal populations. In the Humboldt Current system the hypoxic seafloor at outer shelf depths receives important flushing from the equatorial zone, causing havoc on the sulphur bacteria mats and immediate recolonisation of the sediments by mega- and macrofauna. Conversely, off California, the intruding equatorial water masses appear to have lower oxygen than ambient waters, and may cause oxygen deficiency at upper slope depths. Effects of this change have not been studied in detail, although shrimp and other taxa appear to alter their distribution on the continental margin. Other properties and reactions of the two Pacific EBC benthic ecosystems to el Nino seem to differ, too, as does the overall impact of major episodes (e.g., 1982/1983(1984) vs. 1997/1998). The relation of the "Benguela Nino" to ENSO seems unclear although many Pacific- Atlantic ocean and atmosphere teleconnections have been described. Warm, low- oxygen equatorial water seems to be transported into the upwelling area by similar mechanisms as in the Pacific, but most major impacts on the eukaryotic biota obviously come from other, independent perturbations such as an extreme eutrophication of the sediments ensuing in sulphidic eruptions and toxic algal blooms. Similarities and differences of the Humboldt and California Current benthic ecosystems are discussed with particular reference to ENSO impacts since 1972/73. Where there are data available, the authors include the Benguela Current ecosystem as another important, non-Pacific EBC, which also suffers from the effects of hypoxia.

2003
Sellanes, J, Neira C, Quiroga E.  2003.  Composition, structure and energy flux of the meiobenthos off central Chile. Revista Chilena De Historia Natural. 76:401-415.   10.4067S0716-078X2003000300006.   AbstractWebsite

The general objective of this study was to determine the structure of metazoan meiofauna (at a high taxonomic level) and to estimate its role in the energy flux of the benthic sub-system off Concepcion, Chile (similar to36degrees30' S). Samples were collected in May and November 1997 and May 1998 at five sites located at the: inner Bay of Concepcion (28 m), bay-mouth (35 m), inner-shelf (64 m), mid-shelf (88 in) and outer-shelf (120 m). The study period coincided with the El Nino 1997-1998 (EN) event. The diversity of the meiobenthos was low, but density and biomass were moderate to high compared with average values reported for muddy sub-littoral environments elsewhere. Nematodes were the dominant group, with over 95 % (10(3)-10(4) ind 10 cm(-2)) of the total density, followed by copepods and polychaetes. Highest densities and biomasses were always found at the bay-mouth, followed by the inner-bay and the inner-shelf, while the lowest values occurred at the mid- and outer-shelf. Off Concepcion, the meiofauna plays an important role in the energy flux through the benthic sub-system. Indeed, the meiofauna could be converting to biomass and remineralizing in the inner-bay and bay-mouth up to 36 and 45 %, respectively, of the organic carbon reaching the sediments from the water column.

2002
Levin, L, Gutierrez D, Rathburn A, Neira C, Sellanes J, Munoz P, Gallardo V, Salamanca M.  2002.  Benthic processes on the Peru margin: a transect across the oxygen minimum zone during the 1997-98 El Nino. Progress in Oceanography. 53:1-27.   10.1016/s0079-6611(02)00022-8   AbstractWebsite

Oxygen minimum zones (OMZs) are widespread features in the most productive regions of the world ocean. A holistic view of benthic responses to OMZ conditions will improve our ability to predict ecosystem-level consequences of climatic trends that influence oxygen availability, such as global warming or ENSO-related events. Four stations off Callao, Peru (-12'S, Station A, 305 m; Station B, 562 m; Station C, 830 nu and Station D, 1210 m) were sampled to examine the influence of the low bottom-water oxygen concentration and high organic-matter availability within the OMZ (O(2) < 0.5 ml L(-1)) on sediments, benthic communities, and bioturbation. Sampling took place during early January 1998, an intense El Ni (n) over tildeo period associated with higher-than-normal levels of O(2) on the shelf and upper slope. Peru slope sediments were highly heterogeneous. Sediment total organic carbon content exceeded 16%, lamination was present below 6 cm depth, and filamentous sulfur bacteria (Thioploca spp.) were present at Station A, (305 m, 0, < 0.02 ml L(-1)). Deeper sites contained phosphorite crusts or pellets and exhibited greater bottom-water oxygenation and lower content and quality of organic matter. X-radiographs and (210)Pb and (234)Th profiles suggested the dominance of lateral transport and bioturbation over pelagic sedimentation at the mid- and lower slope sites. Macrofauna, metazoan meiofauna and foraminifera exhibited coherence of density patterns across stations, with maximal densities (and for macrofauna, reduced diversity) at Station A, where bottom-water oxygen concentration was lowest and sediment labile organic matter content (LOC: sum of protein, carbohydrate and lipid carbon) was greatest. Metazoan and protozoan meiofaunal densities were positively correlated with sediment LOC. The taxa most tolerant of nearly anoxic, organic-rich conditions within the Peru OMZ were calcareous foraminifera, nematodes and gutless phallodrilinid (symbiont-bearing) oligochaetes. Agglutinated foraminifera, harpacticoid copepods, polychaetes and many other macrofaunal taxa increased in relative abundance below the OMZ. During the study (midpoint of the 1997-98 El Ni (n) over tildeo), the upper OMZ boundary exhibited a significant deepening (to 190 m) relative to 'normal', non-El Ni (n) over tildeo conditions (< 100 m), possibly causing a mild, transient oxygenation over the upper slope (200-300 m) and reduction of the organic particle flux to the seabed. Future sampling may determine whether the Peru margin system exhibits dynamic responses to changing ENSO-related conditions. (C) 2002 Elsevier Science Ltd. All rights reserved.

2001
Neira, C, Sellanes J, Levin LA, Arntz WE.  2001.  Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep-Sea Research Part I-Oceanographic Research Papers. 48:2453-2472.   10.1016/s0967-0637(01)00018-8   AbstractWebsite

A quantitative study of metazoan meiofauna was carried out on bathyal sediments (305, 562, 830 and 1210 m) along a transect within and beneath the oxygen minimum zone (OMZ) in the southeastern Pacific off Callao, Peru (12 degreesS). Meiobenthos densities ranged from 1517 (upper slope, middle of OMZ) to 440-548 ind. 10cm(-2) (lower slope stations, beneath the OMZ). Nematodes were the numerically dominant meiofaunal taxon at every station, followed by copepods and nauplii. Increasing bottom-water oxygen concentration and decreasing organic matter availability downslope were correlated with observed changes in meiofaunal abundance. The 300-m site, located in the middle of the OMZ, differed significantly in meiofaunal abundance, dominance, and in vertical distribution pattern from the deeper sites. At 305 m, nematodes amounted to over 99% of total meiofauna; about 70% of nematodes were found in the 2-5 cm. interval. At the deeper sites, about 50% were restricted to the top I cm. The importance of copepods and nauplii increased consistently with depth, reaching similar to 12% of the total meiofauna at the deepest site. The observation of high nematode abundances at oxygen concentrations <0.02mll(-1) supports the hypothesis that densities are enhanced by an indirect positive effect of low oxygen involving (a) reduction of predators and competitors and (b) preservation of organic matter leading to high food availability and quality. Food input and quality, represented here by chloroplastic pigment equivalents (CPE) and sedimentary labile organic compounds (protein, carbohydrates and lipids), were strongly, positively correlated with nematode abundance. By way of contrast, oxygen exhibited a strong negative correlation, overriding food availability, with abundance of other meiofauna such as copepods and nauplii. These taxa were absent at the 300-m site. The high correlation of labile organic matter (C-LOM, sum of carbon contents in lipids, proteins and carbohydrates) with CPE (Pearson's r = 0.99, p <0.01) suggests that most of the sedimentary organic material sampled was of phytodetrital origin. The fraction of sediment organic carbon potentially available to benthic. heterotrophs, measured as C-LOM/Total organic carbon, was on average 17% at all stations. Thus, a residual, refractory fraction, constitutes the major portion of organic matter at the studied bathyal sites. (C) 2001 Elsevier Science Ltd. All rights reserved.

Neira, C, Sellanes J, Soto A, Gutierrez D, Gallardo VA.  2001.  Meiofauna and sedimentary organic matter off Central Chile: response to changes caused by the 1997-1998 El Nino. Oceanologica Acta. 24:313-328.   10.1016/s0399-1784(01)01149-5   AbstractWebsite

Quantitative surveys of metazoan meiofauna were carried out in an upwelling region off Central Chile (36 degreesS). During May 1997 and May 1998, coinciding with the onset and end of Fl Nino, five benthic stations (respectively 27, 34, 64, 88, and 120 m depth), from the middle of Concepcion Bay to the edge of the adjacent continental shelf, were sampled. The sedimentary organic matter biopolymeric fraction (proteins, carbohydrates and lipids) and chloroplastic pigments were also assessed. Total meiofauna abundance and biomass increased significantly between sampling dates at the mid-bay and inner shelf sites, from 1474 +/- 354 to 5035 +/- 291 individuals 10 cm(-2) and from 2618 +/- 332 to 5241 +/- 903 individuals 10 cm(-2), respectively. The relative importance of copepods in the top 2 cm increased at all sites (except in the bay mouth). During May 1998, meiofauna, especially nematodes, penetrated deeper in the bay, as well as in the inner and middle shelf sediments. Changes observed in meiobenthos structure among sites and periods were attributed to the higher oxygenation of bottom waters during the summer of 1998 (i.e. El Nino conditions). This was most evident at sites such as the mid bay, where during non-EI Nino years, oxygen-deficient conditions prevail. A decrease of organic matter quantity and quality, related to low primary productivity conditions in 1998 (El Nino), apparently caused few changes in meiofauna structure. A positive correlation between Thioploca and the meiofauna biomass was observed in May 1997, whereas in May 1998 no relationship was found. (C) 2001 Ifremer/CNRS/LRD/Editions scientifiques et medicales Elsevier SAS.

Neira, C, Gad G, Arroyo NL, Decraemer W.  2001.  Glochinema bathyperuvensis sp. n. (Nematoda, Epsilonematidae): A new species from Peruvian bathyal sediments, SE Pacific Ocean. Contributions to Zoology. 70:147-159. AbstractWebsite

Glochinema bathyperuvensis sp. n., the first record of Epsilonematidae from bathyal muddy sediments of the oxygen minimum zone (OMZ) off Callao, Peru (eastern Pacific Ocean) is described. The new species belongs to the subfamily Glochinematinae and is characterized by the possession of more than 8 pairs of subdorsal thorns asymmetrically arranged and a single dorsal one in the pharyngeal region, as well as by the presence of ten to thirteen blade-like cuticular protrusions forming a latero-dorsal palisade around the posterior head region and anterior cervical region, In addition, G. bathyperuvensis is characterized by its large size, more than 240 cuticular annules, provided with an extremely dense,hairy'' body ornamentation and, four rows of ambulatory setae: two inner subventral ones with 8 to 9 setae in males, and 5 to 6 setac in females, and two outer subventral rows composed each of 9-12 ambulatory setae followed by a large number of modified somatic setae. The dense hairy body spines, the large number of modified somatic setae, its dominant occurrence exclusive in oxygen-depleted, organic-rich soupy surface sediments indicate an adaptation to the stressed OMZ habitat conditions.

1996
Neira, C, Rackemann M.  1996.  Black spots produced by buried macroalgae in intertidal sandy sediments of the Wadden Sea: Effects on the meiobenthos. Journal of Sea Research. 36:153-170.   10.1016/s1385-1101(96)90786-8   AbstractWebsite

The effects of buried decaying macroalgae on meiobenthos were examined in intertidal sandy sediments of the Wadden Sea of Lower Saxony. In situ experiments confirmed that one of the principal causes of the formation of reduced surface sediments or 'black spots' on the tidal flats is the increasing occurrence and subsequent decomposition of filamentous green algae (Enteromorpha spp.) buried in the sediment. Five to fifteen days after algal material had been buried, the sediment surface turned black. The impact of these black spots on meiobenthos was dramatic: the changed chemical conditions in the sediment resulted in long and drastic reductions in meiofaunal abundance and number of taxa. A multi-dimensional scaling (MDS) analysis of data on meiobenthic abundances revealed that samples from black-spot areas were clearly separated from those of control and reference areas. Re-oxidized black spots showed recolonization by meiofaunal animals, with numbers of individuals and taxa similar to those of oxidized surface sediments. The use of abundances of members of higher meiobenthic taxa to monitor changes in the sediment's chemistry, especially those caused by biomass overload, is discussed.