Publications

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y [Z]   [Show ALL]
Z
Zirino, A, Elwany H, Neira C, Maicu F, Mendoza G, Levin LA.  2014.  Salinity and its variability in the Lagoon of Venice, 2000–2009. Advances in Oceanography and Limnology. 5:41-59.: Taylor & Francis   10.1080/19475721.2014.900113   Abstract

Yearly averages computed from monthly and bimonthly salinity data collected between 2000 and 2009 from 13 broadly spaced stations in the Venice Lagoon were analysed in view of 30 min data collected semi-continuously during 2009 at nine similarly located stations. Data from all stations and all years indicate that, based on yearly averages, the lagoon may be divided along its major (long) axis into three areas: 1) a northern, freshwater impacted area (S = <28 PSU) of high, tidally-caused, variability, 2) a southern, marine, zone of S >32 PSU of low, tidally-caused, variability, and 3) an intermediate zone. Salinity changes are closely associated with rainfall events, and the incoming freshwater is consistently distributed throughout the lagoon by tidal action. Much variability is simply a result of the forward and backward motion of the tides and is not caused by a salinity change in the water itself. The consistency of the 2000?2009 data and the historical (to 1961) watershed record support the hypothesis that the Venice Lagoon has been and is currently at steady-state with respect to its salinity distribution. As such, it is conducive to the development of (at least) three separate ecosystems.

Zirino, A, Neira C, Maicu F, Levin LA.  2013.  Comments on and implications of a steady-state in coastal marine ecosystems. Chemistry & Ecology. 29:86-99.   10.1080/02757540.2012.696613   AbstractWebsite

Coastal ecosystems can be thought of as being established by a number of physico-geochemical drivers, e.g. geochemistry and bathymetry of the basins, climate, tidal and freshwater flows, natural and anthropogenic inputs of nutrients and toxins, all of which exert an influence on the resulting communities of organisms. Depending on the interactions among the major drivers, ecosystems may occur on both large and small scales and be basin-wide or within basins. For individual and separate ecosystems to exist with some permanence in time, e.g. reach a steady-state, they also have to be ‘defended’. Defences are mechanisms that counter changes to maintain the status quo. We argue, and present evidence to support the notion, that the defence mechanisms are inextricably tied to primary production and the biogeochemical cycling of organic matter and provide buffers that mitigate potentially adverse impacts by trace toxins. Colloid pumping, production of complexing ligands and sulfide formation are some of the mechanisms that control trace substances. Current methods for assessing ecosystems do not address the issue of steady-state, nor do they take account of defence activities, e.g. buffering. Therefore, they cannot assess the ‘robustness’ of ecosystems or their ability to resist change, for good or bad. Also, defence mechanisms may, for a time, mask future potentially serious impacts, suggesting that monitoring efforts with limited budgets should consider the measurement of the inputs into ecosystems as well as the immediate or short-term result of the inputs. [ABSTRACT FROM PUBLISHER]Copyright of Chemistry & Ecology is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Zirino, A, Elwany H, Facca C, Maicu F, Neira C, Mendoza G.  2016.  Nitrogen to phosphorus ratio in the Venice (Italy) Lagoon (2001-2010) and its relation to macroalgae. Marine Chemistry. 180:33-41.   10.1016/j.marchem.2016.01.002   AbstractWebsite

Analysis of the annually-averaged 2001-2010 monthly nutrient data from 13 stations in the Venice Lagoon (Italy) shows that the concentrations of dissolved nitrogen (N) species, measured as total dissolved N (TDN), have increased over time while that of phosphorus (P) species, measured as total dissolved P (TDP) have decreased. During the study period, the TDN/TDP ratio in the lagoon rose from about 46:1 to 100:1 (by atoms), a level at which the growth of benthic macroalgae is favored over that of sea grasses. The increase of the TDN/TDP ratio appears to be caused by two factors: (1) a small, but increasing amount of N in river water entering the lagoon, and (2) low P input combined with adsorption and entrapment of orthophosphate on colloidal iron oxides and carbonates at the water-sediment interface. This second mechanism would explain the increase in the TDN/TDP ratio, principally in zones of low salinity, where hydrodynamic residence times are long enough to permit N enrichment and result in macroalgal growth preferentially in the central, landward, side of the lagoon. However, an examination of the algal coverage of the lagoon floor from 2002 to 2010, indicates that while macroalgal abundance may be influenced by the N/P ratio, the spatial and temporal distribution during this period cannot be explained solely by this one feature. Nonetheless, this work points to the importance of considering the contributions that sediments in shallow lagoons make to the over-all system productivity and ecology and may be applicable to other shallow environments. (C) 2016 Elsevier B.V. All rights reserved.