Export 6 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
Sellanes, J, Quiroga E, Neira C.  2008.  Megafauna community structure and trophic relationships at the recently discovered Concepcion Methane Seep Area, Chile, ~36°S. Ices Journal of Marine Science. 65:1102-1111.   10.1093/icesjms/fsn099   AbstractWebsite

The fauna, community composition, and trophic support of the newly discovered Concepcion Methane Seep Area (CMSA) are compared with those at a nearby non-seep control. The assemblage of chemosymbiotic bivalves is defined by eight species, including the families Lucinidae, Thyasiridae, Solemyidae, and Vesicomyidae. Seep polychaetes are represented by Lamellibrachia sp. and two commensal species of the vesicomyid Calyptogena gallardoi. Although taxonomic analysis is still under way, most of the chemosymbiotic species seem to be endemics. The CMSA is a hotspot for non-seep benthic megafauna too; 101 taxa were present, but most of them are colonists or vagrants (i.e. not endemics of methane seeps). Isotope analysis supported the belief that non-symbiont-bearing species utilize photosynthetically fixed carbon, because they were isotopically distinct from the chemosymbiotic bivalve species present. It is our opinion that, at this site, which underlies one of the most productive coastal upwelling regions of the world, spatial heterogeneity and the availability of hard substratum, generated by the presence of authigenic carbonate crusts, are more important factors in attracting non-seep fauna than the availability of locally produced chemosynthetic food.

Sellanes, J, Neira C, Quiroga E.  2003.  Composition, structure and energy flux of the meiobenthos off central Chile. Revista Chilena De Historia Natural. 76:401-415.   10.4067S0716-078X2003000300006.   AbstractWebsite

The general objective of this study was to determine the structure of metazoan meiofauna (at a high taxonomic level) and to estimate its role in the energy flux of the benthic sub-system off Concepcion, Chile (similar to36degrees30' S). Samples were collected in May and November 1997 and May 1998 at five sites located at the: inner Bay of Concepcion (28 m), bay-mouth (35 m), inner-shelf (64 m), mid-shelf (88 in) and outer-shelf (120 m). The study period coincided with the El Nino 1997-1998 (EN) event. The diversity of the meiobenthos was low, but density and biomass were moderate to high compared with average values reported for muddy sub-littoral environments elsewhere. Nematodes were the dominant group, with over 95 % (10(3)-10(4) ind 10 cm(-2)) of the total density, followed by copepods and polychaetes. Highest densities and biomasses were always found at the bay-mouth, followed by the inner-bay and the inner-shelf, while the lowest values occurred at the mid- and outer-shelf. Off Concepcion, the meiofauna plays an important role in the energy flux through the benthic sub-system. Indeed, the meiofauna could be converting to biomass and remineralizing in the inner-bay and bay-mouth up to 36 and 45 %, respectively, of the organic carbon reaching the sediments from the water column.

Sellanes, J, Neira C, Quiroga E, Teixido N.  2010.  Diversity patterns along and across the Chilean margin: a continental slope encompassing oxygen gradients and methane seep benthic habitats. Marine Ecology-an Evolutionary Perspective. 31:111-124.   10.1111/j.1439-0485.2009.00332.x   AbstractWebsite

In the present study we review datasets available for the Chilean margin to assess the relationship between environmental (or habitat) heterogeneity and benthic diversity. Several factors, such as the presence of different water masses, including the oxygen-deficient Equatorial Sub-surface Waters (ESSW) at the continental shelf and upper slope, and the Antarctic Intermediate Waters (AIW) at mid slope depths appear to control the bathymetric distribution of benthic communities. The presence of methane seeps and an extended oxygen minimum zone (OMZ) add complexity to the benthic distribution patterns observed. All these factors generate environmental heterogeneity, which is predicted to affect the diversity patterns both along and across the Chilean continental margin. The response to these factors differs among different faunal size groups: meio-, macro-, and megafauna. Physiological adaptations to oxygen deficiency and constraints related to body size of each group seem to explain the larger-scale patterns observed, while sediment/habitat heterogeneity (e.g. at water mass boundaries, hardgrounds, biogeochemical patchiness, sediment organic content, grain size) may influence the local fauna diversity patterns.

Sellanes, J, Neira C.  2006.  ENSO as a natural experiment to understand environmental control of meiofaunal community structure. Marine Ecology-an Evolutionary Perspective. 27:31-43.   10.1111/j.1439-0485.2005.00069.x   AbstractWebsite

The sediments of the Bay of Concepcion and the adjacent shelf underlie one of the most productive upwelling areas in the SE Pacific margin. Reports on factors controlling meiofaunal community structure in these kinds of organic-rich and oxygen-deficient habitats are scarce in the literature. In this study, five sites along a transect from the mid-Bay of Concepcion (27 m) to the outer shelf (120 m) were studied on fives dates (May, August, November 1997, and March and May 1998) in order to assess the dynamic relationships between sedimentary organic matter and metazoan meiofauna. The sampling period coincided with the 1997-1998 El Nino event. Sediment parameters investigated were the redox potential discontinuity depth, photosynthetic pigment concentrations (chlorophyll a and phaeopigments), organic carbon, nitrogen, total lipids, carbohydrates, and proteins. In general, lowest values of meiofauna abundance and biomass were found within the naturally eutrophic Bay of Concepcion and towards the shelf break, while maximum values occurred at intermediate depths. During the whole period, the meiofaunal abundance was negatively correlated with the concentration of most of the biochemical components of organic matter, as well as with the sediment phaeopigment content. However, positive correlations were found with chlorophyll a derived indices and with bottom-water oxygen content. Most of the sediment parameters displayed a seasonal cycle, but towards the beginning of 1998, an effect of the 1997-1998 El Nino was evident. Typical austral -summer (i.e. oxygen-deficient) conditions did not develop, and sedimentary parameters reflected a decreased input of phytodetritus. Along the transect, the magnitude of this effect on meiofauna varied among sites. An overall positive response, in terms of meiofaunal abundance was observed, probably due to the amelioration of low oxygen conditions in the sediment.

Sellanes, J, Quiroga E, Neira C, Gutierrez D.  2007.  Changes of macrobenthos composition under different ENSO cycle conditions on the continental shelf off central Chile. Continental Shelf Research. 27:1002-1016.   10.1016/j.csr.2007.01.001   AbstractWebsite

The course of environmental conditions and shelf macrobenthic communities off Central Chile (similar to 36 degrees S) during the strong 1997-98 El Nino (EN) event is compared with a subsequent and basically "normal" period (2002-2003). Changes in macrofaunal community, feeding mode structure, and biomass size spectra are contrasted over time with changes in oceanographic and sediment settings, in order to assess intra- and inter-annual changes in faunal composition during both ENSO periods. During EN, there was a decrease in biomass and abundance of species known to be well adapted to organic-rich, oxygen-deficient environments, such as the interface-feeding polychacte Paraprionospio pinnata. On the other hand the abundance of highly mobile, burrowing polychaetes remained unaffected, or even increased in biomass. The decline of P. pinnata lasted several years after the demise of warm conditions, possibly due to negative interactions with those more mobile burrowing polychaetes. The percent contribution of subsurface-deposit feeders to total biomass increased during EN (49.3 +/- 12.4% during summer) and declined only in the summer-fall period of 2002-03 (11.1 +/- 4.1%). An opposite trend was observed for interface and surface-deposit feeders. From EN to summer-fall 2002-03 (i.e., normal to low oxygen conditions) the size-structure of the macrobenthos switched from a larger to a smaller-sized assemblage. However, biomass was maintained due to successful recruitment and high abundance of both P. pinnata and the squat lobster, Pleuroncodes monodon. Our results suggest that the shelf macrofaunal community structure exhibit fluctuations at various time scales, and that these changes are more pronounced during and after a strong EN event. In such cases, the effects of such an event may be recorded at latitudes as far south as 36 degrees S, with consequences in the biota lasting for many years after the demise of warm conditions. (c) 2007 Elsevier Ltd. All rights reserved.

Sellanes, J, Neira C, Gallardo VA, Gutierrez D, Soto A.  1999.  Meiofauna metazoaria en una zona de surgencia costera de Chile central: relaciones con factores abioticos durante El Nino 1997-1998. Libro de resumenes ampliados : VIII COLACMAR (VIII Congreso Latinoamericano sobre Ciencias del Mar, 17-21 de octubre 1999, Trujillo, Perú). ( Tresierra Aguilar AE, Culquichicon Malpica ZG, Eds.)., Trujillo, Peru: UNT [Mexico] Abstract