Publications

Export 24 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
N
Neira, C, Vales M, Mendoza G, Hoh E, Levin LA.  2018.  Polychlorinated biphenyls (PCBs) in recreational marina sediments of San Diego Bay, southern California. Marine Pollution Bulletin. 126:204-214.   10.1016/j.marpolbul.2017.10.096   AbstractWebsite

Polychlorinated biphenyl (PCB) concentrations were determined in surface sediments from three recreational marinas in San Diego Bay, California. Total PCB concentrations ranged from 23 to 153, 31-294, and 151-1387 ng g(-1) for Shelter Island Yacht Basin (SIYB), Harbor Island West (HW) and Harbor Island East (HE), respectively. PCB concentrations were significantly higher in HE and PCB group composition differed relative to HW and SIYB, which were not significantly different from each other in concentration or group composition. In marina sediments there was a predominance (82-85%) of heavier molecular weight PCBs with homologous groups (6CL-7CL) comprising 59% of the total. In HE 75% of the sites exceeded the effect range median (ERM), and toxicity equivalence (TEQ dioxin-like PCBs) values were higher relative to those of HW and SIYB, suggesting a potential ecotoxicological risk.

Neira, C, Levin LA, Grosholz ED.  2005.  Benthic macrofaunal communities of three sites in San Francisco Bay invaded by hybrid Spartina, with comparison to uninvaded habitats. Marine Ecology-Progress Series. 292:111-126.   10.3354/meps292111   AbstractWebsite

A hybrid cordgrass, formed from a cross between Spartina alterniflora (Atlantic cordgrass) and S. foliosa (Pacific cordgrass), has recently spread within the intertidal zone of south San Francisco Bay. Sediment properties and macroinfaunal community structure were compared in patches invaded by Spartina hybrid and adjacent uninvaded patches at 3 sites in San Francisco Bay (2 tidal flats and 1 Salicornia marsh). We hypothesized that (1) sediments vegetated by Spartina hybrid would have reduced sediment grain size, higher organic matter content, lower redox potential, lower salinity and reduced microalgal biomass relative to adjacent unvegetated tidal flat sediments, and (2) that differences in the sediment environment would correspond to changes in the infaunal invertebrate community structure and feeding modes. We observed 75 % lower total macro-faunal density and lower species richness in Spartina-vegetated sediments at Elsie Roemer (30 yr old invasion) than in an adjacent unvegetated tidal flat. This was due to lower densities of surface-feeding amphipods, bivalves, cirratulid and spionid polychaetes. The proportional representation of subsurface-deposit feeders was greater in Spartina patches than in unvegetated sediments. At a more recently invaded site (Roberts Landing; 15 yr invasion), Spartina patches differed from tidal flat sediments in composition, but not in abundance. Native (Salicornia) and Spartina patches exhibited similar sediment properties at San Mateo, where the Spartina hybrid invaded 8 to 10 yr earlier. No differences were detected in densities or proportions of surface- or subsurface-deposit feeders, but the proportion of carnivores/omnivores and grazers increased in the hybrid-invaded patches. These studies suggest that the invasive Spartina hybrid in south San Francisco Bay can have differing effects on sediment ecosystems, possibly depending on the location, age, or type of habitats involved.

Neira, C.  1992.  Benthic fecal pellets. Cycling of sediment and organic carbon by Heteromastus filiformis. Ph.D., Oldenburg, Germany: Universität Oldenburg Abstract
n/a
Neira, C, Levin LA, Mendoza G, Zirino A.  2014.  Alteration of benthic communities associated with copper contamination linked to boat moorings. Marine Ecology-an Evolutionary Perspective. 35:46-66.   10.1111/maec.12054   AbstractWebsite

Although copper (Cu) is an essential element for life, leaching from boat paint can cause excess environmental loading in enclosed marinas. The effects of copper contamination on benthic macrofaunal communities were examined in three San Diego Bay marinas (America's Cup, Harbor Island West and East) in Southern California, USA. The distribution of Cu concentration in sediments exhibited a clear spatial gradient, with hotspots created by the presence of boats, which in two marinas exceeded the effect range medium (ERM). Elevated sediment Cu was associated with differences in benthic assemblages, reduced species richness and enhanced dominance in America's Cup and Harbor Island West, whereas Harbor Island East did not appear to be affected. At sites without boats there were greater abundances of some amphipods such as the species Desdimelita sp., Harpinia sp., Aoroides sp., Corophium sp., Podocerus sp., bivalves such as Lyonsia californica, Musculista senhousia, Macoma sp., and polychaetes such as Diplocirrus sp. In contrast, at sites with boats, densities of Pseudopolydora paucibranchiata, Polydora nuchalis, Euchone limnicola, Exogone lourei, Tubificoides spp. were enhanced. The limited impact on Harbor Island East suggests not only lower Cu input rates and increased water flushing and mixing, but also the presence of adequate defense mechanisms that regulate availability and mitigate toxic impacts. At all three marinas, Cu in tissues of several macrobenthic species exhibited Cu bioaccumulation above levels found in the surrounding environment. The annelids Lumbrineris sp. and Tubificoides spp., and the amphipod Desdimelita sp. contained high levels of Cu, suggesting they function as Cu bioaccumulators. The spionid polychaetes Polydora nuchalis and Pseudopolydora paucibranchiata had much lower Cu concentrations than surrounding sediments, suggesting they function as Cu bioregulators. The macrobenthic invertebrates in San Diego Bay marinas that tolerate Cu pollution (e.g. P.nuchalis, P.paucibranchiata, Euchone limnicola, Typosyllis sp., Tubificoides sp.) may function as indicators of high-Cu conditions, whereas the presence of Cu-sensitive species (e.g. Podocerus sp., Aoroides sp., Harpinia sp., Macoma sp., Lyonsia californica) may indicate healthier conditions (less Cu-stressed). Parallel responses by faunas of Shelter Island Yacht Basin, also in San Diego Bay, suggest potential for development of regional Cu contamination assessment criteria, and call for functional comparisons with other marinas and coastal water bodies.

Neira, C, Sellanes J, Levin LA, Arntz WE.  2001.  Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep-Sea Research Part I-Oceanographic Research Papers. 48:2453-2472.   10.1016/s0967-0637(01)00018-8   AbstractWebsite

A quantitative study of metazoan meiofauna was carried out on bathyal sediments (305, 562, 830 and 1210 m) along a transect within and beneath the oxygen minimum zone (OMZ) in the southeastern Pacific off Callao, Peru (12 degreesS). Meiobenthos densities ranged from 1517 (upper slope, middle of OMZ) to 440-548 ind. 10cm(-2) (lower slope stations, beneath the OMZ). Nematodes were the numerically dominant meiofaunal taxon at every station, followed by copepods and nauplii. Increasing bottom-water oxygen concentration and decreasing organic matter availability downslope were correlated with observed changes in meiofaunal abundance. The 300-m site, located in the middle of the OMZ, differed significantly in meiofaunal abundance, dominance, and in vertical distribution pattern from the deeper sites. At 305 m, nematodes amounted to over 99% of total meiofauna; about 70% of nematodes were found in the 2-5 cm. interval. At the deeper sites, about 50% were restricted to the top I cm. The importance of copepods and nauplii increased consistently with depth, reaching similar to 12% of the total meiofauna at the deepest site. The observation of high nematode abundances at oxygen concentrations <0.02mll(-1) supports the hypothesis that densities are enhanced by an indirect positive effect of low oxygen involving (a) reduction of predators and competitors and (b) preservation of organic matter leading to high food availability and quality. Food input and quality, represented here by chloroplastic pigment equivalents (CPE) and sedimentary labile organic compounds (protein, carbohydrates and lipids), were strongly, positively correlated with nematode abundance. By way of contrast, oxygen exhibited a strong negative correlation, overriding food availability, with abundance of other meiofauna such as copepods and nauplii. These taxa were absent at the 300-m site. The high correlation of labile organic matter (C-LOM, sum of carbon contents in lipids, proteins and carbohydrates) with CPE (Pearson's r = 0.99, p <0.01) suggests that most of the sedimentary organic material sampled was of phytodetrital origin. The fraction of sediment organic carbon potentially available to benthic. heterotrophs, measured as C-LOM/Total organic carbon, was on average 17% at all stations. Thus, a residual, refractory fraction, constitutes the major portion of organic matter at the studied bathyal sites. (C) 2001 Elsevier Science Ltd. All rights reserved.

Neira, C, Delgadillo-Hinojosa F, Zirino A, Mendoza G, Levin LA, Porrachia M, Deheyn DD.  2009.  Spatial distribution of copper in relation to recreational boating in a California shallow-water basin. Chemistry and Ecology. 25:417-433.   10.1080/02757540903334197   AbstractWebsite

The overall effect of the number of boats on the copper (Cu) levels in the water column and sediment, along with their spatial variability within Shelter Island Yacht Basin (SIYB), San Diego Bay, California was examined. We identified a horizontal gradient of increasing dissolved Cu and Cu in sediment from outside to the head of SIYB which was coincident with the increasing number of boats. Spatial models of Cu distribution in water and sediment indicated the presence of 'hotspots' of Cu concentration. From outside to the head of SIYB, dissolved Cu ranged from 1.3 gL-1 to 14.6 gL-1 in surface water, and 2.0 gL-1 to 10.2 gL-1 in bottom water. Cu in sediment exceeded the Effect Range Low of 34mgkg-1 (i.e. where adverse effects to fauna may occur), with a peak concentration of 442mgkg-1 at the head of the basin. Free Cu++ in surface water was several orders of magnitude higher than in sediment porewater. High-resolution data of Cu species together with probability maps presented in this paper will allow managers to easily visualise and localise areas of impaired quality and to prioritise which areas should be targeted to improve Cu-related conditions.

Neira, C, Rackemann M.  1996.  Black spots produced by buried macroalgae in intertidal sandy sediments of the Wadden Sea: Effects on the meiobenthos. Journal of Sea Research. 36:153-170.   10.1016/s1385-1101(96)90786-8   AbstractWebsite

The effects of buried decaying macroalgae on meiobenthos were examined in intertidal sandy sediments of the Wadden Sea of Lower Saxony. In situ experiments confirmed that one of the principal causes of the formation of reduced surface sediments or 'black spots' on the tidal flats is the increasing occurrence and subsequent decomposition of filamentous green algae (Enteromorpha spp.) buried in the sediment. Five to fifteen days after algal material had been buried, the sediment surface turned black. The impact of these black spots on meiobenthos was dramatic: the changed chemical conditions in the sediment resulted in long and drastic reductions in meiofaunal abundance and number of taxa. A multi-dimensional scaling (MDS) analysis of data on meiobenthic abundances revealed that samples from black-spot areas were clearly separated from those of control and reference areas. Re-oxidized black spots showed recolonization by meiofaunal animals, with numbers of individuals and taxa similar to those of oxidized surface sediments. The use of abundances of members of higher meiobenthic taxa to monitor changes in the sediment's chemistry, especially those caused by biomass overload, is discussed.

Neira, C, Ingels J, Mendoza G, Hernandez-Lopez E, Levin LA.  2018.  Distribution of meiofauna in bathyal sediments influenced by the oxygen minimum zone off Costa Rica. Frontiers in Marine Science. 5   10.3389/fmars.2018.00448   AbstractWebsite

Ocean deoxygenation has become a topic of increasing concern because of its potential impacts on marine ecosystems, including oxygen minimum zone (OMZ) expansion and subsequent benthic effects. We investigated the influence of oxygen concentration and organic matter (OM) availability on metazoan meiofauna within and below an OMZ in bathyal sediments off Costa Rica, testing the hypothesis that oxygen and OM levels are reflected in meiofaunal community structures and distribution. Mean total densities in our sampling cores (400-1800 m water depth) were highest with 3688 ind. 10 cm(-2) at the OMZ core at 400 m water depth, decreasing rapidly downslope. Nematodes were overall dominant, with a maximum of 99.9% in the OMZ core, followed by copepods (13%), nauplii (4.8%), and polychaetes (3%). Relative copepod and nauplii abundance increased consistently with depth and increasing bottom-water O-2. Meiofaunal composition was significantly different among sites, with lower taxonomic diversity at OMZ sites relative to deeper, oxygenated sites. Vertical distribution patterns within sediments showed that in strongly oxygen-depleted sites less meiofauna was concentrated in the surface sediment than at deeper slope sites. Highest meiofaunal abundance and lowest diversity occurred under lowest oxygen and highest pigment levels, whereas highest diversity occurred under highest oxygen-concentrations and low pigments, as well as high quality of sedimentary pigment (chl a/phaeo) and organic carbon (C/N). The lower meiofaunal diversity, and lower structural and trophic complexity, at oxygen-depleted sites raises concerns about changes in the structure and function of benthic marine ecosystems in the face of OMZ expansions.

Neira, C, Grosholz ED, Levin LA, Blake R.  2006.  Mechanisms generating modification of benthos following tidal flat invasion by a Spartina hybrid. Ecological Applications. 16:1391-1404.   10.1890/1051-0761(2006)016[1391:mgmobf]2.0.co;2   AbstractWebsite

Many coastal habitats are being substantially altered by introduced plants. In San Francisco Bay,, California, USA, a hybrid form of the eastern cordgrass Spartina alterniflora is rapidly invading open mudflats in southern and central sections of the Bay, altering habitat, reducing macrofaunal densities, and shifting species composition. The invasion has resulted in significant losses of surface-feeding amphipods, bivalves, and cirratulid polychaetes, while subsurface feeding groups such as tubificid oligochaetes and capitellid polychaetes have been unaffected. In the present paper, we document the causes and mechanisms underlying the changes observed. Through a series of in situ manipulative experiments we examined the influence of hybrid Spartina canopy on a range of physical, chemical, and biological properties. The hybrid Spartina canopy exerted a strong influence on. the hydrodynamic regime, triggering a series of physical, chemical, and biological changes in the benthic system. Relative to tidal flats, water velocity was reduced in hybrid patches, promoting deposition of fine-grained, organic-rich particles. The resulting changes in the sediment environment included increased porewater sulfide concentrations and anoxia, which led to poor survivorship. of surface feeders such as, bivalves, amphipods, and polychaetes. These are key taxa that support higher trophic levels including migratory shorebirds that feed on tidal flats. Altered flow in the Spartina canopy further contributed to changes in barnacle recruitment and resuspension of adult benthic invertebrates. Increased crab-induced predation pressure associated with Spartina invasion also contributed to changes in benthic invertebrate communities. Our results suggest that multiple physical, chemical, biotic, and trophic impacts of the Spartina invasion have resulted in substantial changes in benthic communities that are likely to have important effects on the entire ecosystem.

Neira, C, Silva M, Iorizi M, Minale L.  1992.  Marine organic chemistry .5. Asterosaponins from the starfish Heliaster helianthus. Boletin De La Sociedad Chilena De Quimica. 37:139-142. AbstractWebsite

A chemical study of the starfisf Heliaster helianthus is reported. The polar extract yielded four glucosides, a new xylosides 1, thornasterosides A 2, the xyloside 3 with a known aglycone and glacialoside A 4.

Neira, C, Mendoza G, Porrachia M, Stransky C, Levin LA.  2015.  Macrofaunal recolonization of copper-contaminated sediments in San Diego Bay. Marine Pollution Bulletin. 101:794-804.   10.1016/j.marpolbul.2015.09.023   AbstractWebsite

Effects of Cu-loading on macrofaunal recolonization were examined in Shelter Island Yacht Basin (San Diego Bay, California). Sediments with high and low Cu levels were defaunated and Cu-spiked, translocated, and then placed back into the environment These demonstrated that the alteration observed in benthic communities associated with Cu contamination occurs during initial recolonization. After a 3-month exposure to sediments with varying Cu levels, two primary colonizing communities were identified: (1) a "mouth assemblage" resembling adjacent background fauna associated with low-Cu levels that was more diverse and predominantly dominated by surface- and subsurface-deposit feeders, burrowers, and tube builders, and (2) a "head assemblage" resembling adjacent background fauna associated with high-Cu concentrations, with few dominant species and an increasing importance of carnivores and mobile epifauna. Cu loading can cause reduced biodiversity and lower structural complexity that may last several months if high concentrations persist, with a direct effect on community functioning. (C) 2015 Elsevier Ltd. All rights reserved.

Neira, C, Sellanes J, Soto A, Gutierrez D, Gallardo VA.  2001.  Meiofauna and sedimentary organic matter off Central Chile: response to changes caused by the 1997-1998 El Nino. Oceanologica Acta. 24:313-328.   10.1016/s0399-1784(01)01149-5   AbstractWebsite

Quantitative surveys of metazoan meiofauna were carried out in an upwelling region off Central Chile (36 degreesS). During May 1997 and May 1998, coinciding with the onset and end of Fl Nino, five benthic stations (respectively 27, 34, 64, 88, and 120 m depth), from the middle of Concepcion Bay to the edge of the adjacent continental shelf, were sampled. The sedimentary organic matter biopolymeric fraction (proteins, carbohydrates and lipids) and chloroplastic pigments were also assessed. Total meiofauna abundance and biomass increased significantly between sampling dates at the mid-bay and inner shelf sites, from 1474 +/- 354 to 5035 +/- 291 individuals 10 cm(-2) and from 2618 +/- 332 to 5241 +/- 903 individuals 10 cm(-2), respectively. The relative importance of copepods in the top 2 cm increased at all sites (except in the bay mouth). During May 1998, meiofauna, especially nematodes, penetrated deeper in the bay, as well as in the inner and middle shelf sediments. Changes observed in meiobenthos structure among sites and periods were attributed to the higher oxygenation of bottom waters during the summer of 1998 (i.e. El Nino conditions). This was most evident at sites such as the mid bay, where during non-EI Nino years, oxygen-deficient conditions prevail. A decrease of organic matter quantity and quality, related to low primary productivity conditions in 1998 (El Nino), apparently caused few changes in meiofauna structure. A positive correlation between Thioploca and the meiofauna biomass was observed in May 1997, whereas in May 1998 no relationship was found. (C) 2001 Ifremer/CNRS/LRD/Editions scientifiques et medicales Elsevier SAS.

Neira, C, Mendoza G, Levin LA, Zirino A, Delgadillo-Hinojosa F, Porrachia M, Deheyn DD.  2011.  Macrobenthic community response to copper in Shelter Island Yacht Basin, San Diego Bay, California. Marine Pollution Bulletin. 62:701-717.   10.1016/j.marpolbul.2011.01.027   AbstractWebsite

We examined Cu contamination effects on macrobenthic communities and Cu concentration in invertebrates within Shelter Island Yacht Basin, San Diego Bay, California. Results indicate that at some sites, Cu in sediment has exceeded a threshold for "self defense" mechanisms and highlight the potential negative impacts on benthic faunal communities where Cu accumulates and persists in sediments. At sites with elevated Cu levels in sediment, macrobenthic communities were not only less diverse but also their total biomass and body size (individual biomass) were reduced compared to sites with lower Cu. Cu concentration in tissue varied between species and within the same species, reflecting differing abilities to "regulate" their body load. The spatial complexity of Cu effects in a small marina such as SIYB emphasizes that sediment-quality criteria based solely on laboratory experiments should be used with caution, as they do not necessarily reflect the condition at the community and ecosystem levels. (C) 2011 Elsevier Ltd. All rights reserved.

Neira, C, Höpner T, Rackemann M.  1998.  Annual course of sediment parameters and meiofauna on a sandy tidal flat in the Wadden Sea after the severe winter of 1995/96. Deutsche Hydrografische Zeitschrift. 50:301-311.: Springer-Verlag   10.1007/BF02764227   AbstractWebsite

Local abiotic and biotic data are presented from the Gröninger Plate (a sandy tidal flat south of Spiekeroog Island) covering a period of one year (February 1996 — February 1997), which includes the coldest part of the ice winter of 1995/96 as well as the winter of 1996/97. The thickness of the visible oxidized layer revealed a clear seasonality. Regarding sandy sediments, values were generally low and ranged between 2.9 cm in winter and 0.9 cm in summer. Biotic and abiotic data are restricted to composition and abundance of meiofauna taxa, total organic carbon, Chl a and phaeopigments as well as temperature and salinity. A significant reduction of meiofaunal abundance, particularly of nematodes, in the top 2 cm was recorded in samples taken in sediments covered by ice, as compared to sediments without an ice cover. However, vertical distribution of meiofauna under ice cover showed that nematodes had migrated to deeper sediment layers. The meiofauna appeared to have overcome the stress of low temperatures and ice formation better than the macrofauna.

Neira, C, Levin LA, Grosholz ED, Mendoza G.  2007.  Influence of invasive Spartina growth stages on associated macrofaunal communities. Biological Invasions. 9:975-993.   10.1007/s10530-007-9097-x   AbstractWebsite

In coastal wetlands, invasive plants often act as ecosystem engineers altering flow, light and sediments which, in turn, can affect benthic animal communities. However, the degree of influence of the engineer will vary significantly as it grows, matures and senesces, and surprisingly little is known about how the influence of an ecosystem engineer varies with ontogeny. We address this issue on the tidal flats of San Francisco Bay where hybrid Spartina (foliosa x alterniflora) invaded 30 years ago. The invasion has altered the physico-chemical properties of the sediment habitat, which we predicted should cause changes in macrofaunal community structure and function. Through mensurative and manipulative approaches we investigated the influence of different growth stages of hybrid Spartina on macrobenthos and the underlying mechanisms. Cross-elevation sampling transects were established covering 5 zones (or stages) of the invasion, running from the tidal flat (pre-invasion) to an unvegetated dieback zone. Additionally, we experimentally removed aboveground plant structure in the mature (inner) marsh to mimic the 'unvegetated areas'. Our results revealed four distinct faunal assemblages, which reflected Spartina-induced changes in the corresponding habitat properties along an elevation gradient: a pre-invaded tidal flat, a leading edge of immature invasion, a center of mature invasion, and a senescing dieback area. These stages of hybrid Spartina invasion were accompanied by a substantial reduction in macrofaunal species richness and an increase in dominance, as well as a strong shift in feeding modes, from surface microalgal feeders to subsurface detritus/Spartina feeders (mainly tubificid oligochaetes and capitellid polychaetes). Knowledge of the varying influence of plant invaders on the sediment ecosystem during different phases of invasion is critical for management of coastal wetlands.

Neira, C, Hopner T.  1993.  Fecal pellet production and sediment reworking potential of the polychaete Heteromastus filiformis show a tide dependent periodicity. Ophelia. 37:175-185. AbstractWebsite

The sediment reworking potential of Heteromastus filiformis (a capitellid polychaete) was determined in a laboratory mesocosm by collecting and counting fecal pellets deposited on the sediment surface at 6-hour intervals over several simulated tidal cycles. Pellet production rates showed a marked 6-hour periodicity. Production was highest during the flooding and decreased during the ebbing tide. In the absence of a simulated tidal cycle, there was no periodicity in pellet production. With an annual mean population density of 1200 individuals/m2 in the Jadebusen Bay, Wadden Sea, the quantity of sediment reworked by H. filiformis is about 175 ml/m2/day or 64 l/m2/year, which is approximately a deep-sediment layer of 6 cm, transported to the surface annually . Pellet production by Heteromastus contributes substantially to the recycling of detritus and nutrients in the Wadden Sea, especially in areas with high population densities.

Neira, C, Cossaboon J, Mendoza G, Hoh E, Levin LA.  2017.  Occurrence and distribution of polycyclic aromatic hydrocarbons in surface sediments of San Diego Bay marinas. Marine Pollution Bulletin. 114:466-479.   10.1016/j.marpolbul.2016.10.009   Abstract

Polycyclic aromatic hydrocarbons (PAHs) have garnered much attention due to their bioaccumulation, carcinogenic properties, and persistence in the environment. Investigation of the spatial distribution, composition, and sources of PAHs in sediments of three recreational marinas in San Diego Bay, California revealed significant differences among marinas, with concentrations in one site exceeding 16,000 ng g− 1. ‘Hotspots’ of PAH concentration suggest an association with stormwater outfalls draining into the basins. High-molecular weight PAHs (4–6 rings) were dominant (> 86%); the average percentage of potentially carcinogenic PAHs was high in all sites (61.4–70%) but ecotoxicological risks varied among marinas. Highly toxic benzo(a)pyrene (BaP) was the main contributor (> 90%) to the total toxic equivalent quantity (TEQ) in marinas. PAHs in San Diego Bay marina sediments appear to be derived largely from pyrogenic sources, potentially from combustion products that reach the basins by aerial deposition and stormwater drainage from nearby streets and parking lots.

Neira, C, Decraemer W, Backeljau T.  2005.  A new species of Glochinema (Epsilonematidae : Nematoda) from the oxygen minimum zone off Baja California, NE Pacific and phylogenetic relationships at species level within the family. Cahiers De Biologie Marine. 46:105-126. AbstractWebsite

Glochinema spinithorni sp. nov. is described from muddy, bathyal sediments of the oxygen minimum zone (OMZ) of the north eastern Pacific Ocean off Baja California. It is characterized by a rather large body length (over I mm), a large number of body rings (242-282), sexual dimorphism in the number and position of pharyngeal thorns near the head region, cuticular ornamentation with numerous hairy spines and two sets of stronger spines ventrally in the anterior body half, mid-sized spiral amphids, and by the number and arrangement of ambulatory setae and long spicules (over 100 mu m). The finding of a second OMZ Glochinema species with similar morphological characteristics supports the presumption that OMZs function as isolated habitats promoting endemism at low taxonomic levels. Results of phylogenetic analyses at the species level restricted to the Glochinematinae and Keratonematinae suggest that both OMZ species form a monophyletic group. An attempt was made to recognize phylogenetic relationships at species level within the family. The phylogenetic analyses were based upon a data matrix of 96 ingroup taxa and 25 characters. The results support the monophyly of the genera Leptepsilonema, Metepsilonema, Perepsilonema and Polkepsilonema (with or without Pternepsilonema).

Neira, C, Hoeneisen M, Silva M, Minale L.  1985.  Marine organic chemistry, IV. Structure of the principal aglycones from the starfish Meyenaster gelatinosus. Journal of Natural Products. 48:848-848.   10.1021/np50041a031   Abstract
n/a
Neira, C, King I, Mendoza G, Sellanes J, De Ley P, Levin LA.  2013.  Nematode community structure along a central Chile margin transect influenced by the oxygen minimum zone. Deep Sea Research Part I: Oceanographic Research Papers. 78:1-15.   10.1016/j.dsr.2013.04.002   AbstractWebsite

Nematodes are among the metazoans most tolerant of low-oxygen conditions and play major roles in seafloor ecosystem processes. Nematode communities were studied in sediments off Concepción, Central Chile, spanning the outer shelf within the OMZ (122 m) to the mid-lower continental slope (972 m) beneath the OMZ. The total density and biomass of nematodes (core depth 0–10 cm) ranged from 677 to 2006 ind. 10 cm−2, and 168.4 to 506.5 µg DW 10 cm−2, respectively. Among metazoan meiofaunal taxa, nematodes predominated at all sites both in terms of relative abundance (83.7–99.4%) and biomass (53.8–88.1%), followed by copepods, nauplii and polychaetes. Nematodes were represented by 33 genera distributed among 17 families, with densities greatest at low oxygen sites (122–364 m; ~2000 ind. 10 cm−2). Nematode generic and trophic diversity, and individual biomass were lowest, and Rank 1 dominance was highest, at the most oxygen-depleted site (122 m), despite the fact that the organic carbon content of the sediment was maximal at this depth. At the most oxygenated slope sites (827 and 972 m), all of Wieser's nematode feeding groups were represented. In contrast, at the lowest-oxygen site, only selective deposit (bacterial) feeders (1A) were present, indicating a reduction in trophic complexity. A large percentage of nematodes inhabited subsurface sediment layers (>1 cm). At deeper, more oxygenated sites (827 and 972 m), nematode individual biomass increased downcore, while within the OMZ, nematode biomass was low and remained relatively uniform through the sediment column. The concentration of nematodes in deeper sediment layers, the vertical distribution of the feeding groups, as well as the high nutritional quality of the deeper layers, suggest a differential resource partitioning of the food available, which may reduce interspecific competition.

Neira, C, Gad G, Arroyo NL, Decraemer W.  2001.  Glochinema bathyperuvensis sp. n. (Nematoda, Epsilonematidae): A new species from Peruvian bathyal sediments, SE Pacific Ocean. Contributions to Zoology. 70:147-159. AbstractWebsite

Glochinema bathyperuvensis sp. n., the first record of Epsilonematidae from bathyal muddy sediments of the oxygen minimum zone (OMZ) off Callao, Peru (eastern Pacific Ocean) is described. The new species belongs to the subfamily Glochinematinae and is characterized by the possession of more than 8 pairs of subdorsal thorns asymmetrically arranged and a single dorsal one in the pharyngeal region, as well as by the presence of ten to thirteen blade-like cuticular protrusions forming a latero-dorsal palisade around the posterior head region and anterior cervical region, In addition, G. bathyperuvensis is characterized by its large size, more than 240 cuticular annules, provided with an extremely dense,hairy'' body ornamentation and, four rows of ambulatory setae: two inner subventral ones with 8 to 9 setae in males, and 5 to 6 setac in females, and two outer subventral rows composed each of 9-12 ambulatory setae followed by a large number of modified somatic setae. The dense hairy body spines, the large number of modified somatic setae, its dominant occurrence exclusive in oxygen-depleted, organic-rich soupy surface sediments indicate an adaptation to the stressed OMZ habitat conditions.

Neira, C, Decraemer W.  2009.  Desmotersia levinae, a new genus and new species of free-living nematode from bathyal oxygen minimum zone sediments off Callao, Peru, with discussion on the classification of the genus Richtersia (Chromadorida: Selachinematidae). Organisms Diversity & Evolution. 9:1-2.   10.1016/j.ode.2008.09.004   AbstractWebsite

Desmotersia levinae gen. n., sp. n. is proposed., based on material found in bathyal oxygen minimum zone sediments off the coast of Peru. Desmotersia closely resembles Richtersia in the animals' general appreance and in spiny ornamentation of the body cuticle, but clearly differs in stoma structure and by the presence of a dorsal tooth. Desmotersia levinae is characterized by a variety of spiny ornamentations anteriorly formed by bipartite spines arranged into a fin-like picket fence, by a head with an asymmetrical cephalic capsule, presence of two closely spaced ventral longitudinal rows of copulatory thorns, and by 2-4 ventral thorns in mid-tail positions on the male. As Desmotersia apparently forms a link between Selachinematidae and Desmodoridae, the systematic positions of Desmotersia and Richtersia are discussed. Lis is the :interaction between D. levinae and its habitat, in the full, online edition of this paper. (C) 2008 Gesellschaft fur Biologische Systematik. Published by Elsevier GmbH. All rights reserved.

Neira, C, Hopner T.  1994.  The role of Heteromastus filiformis (Capitellidae, Polychaeta) in organic carbon cycling. Ophelia. 39:55-73. AbstractWebsite

Carbon transport rates were estimated from the pellet production rates and the organic carbon content of fresh fecal pellets of Heteromastus filiformis. With an annual mean individual density of 1.200 per m2, an annual mean pellet production of 36 kg/m2 (dry weight) and an annual mean carbon content of 2% in the pellets, Heteromastus brings from about 20 cm depth to the surface 2 g C/m2/day or 730 g C/m2/year. In fresh fecal pellets the content of finer particles was two-fold, and the content of organic carbon in the pellets was 2.4-fold higher than in the feeding zone sediment. Fine particles in the pellets are richer in organic carbon and protein than those in deep sediment. This points to selective feeding. Meiofauna accelerated the destruction of Heteromastus pellets. After 20 days in the presence of meiofauna, only 15% of the initial pellets were still intact, i.e. with sharp margins, while 79% were partially destructed but were still recognizable as such. In the absence of meiofauna 96% of the pellets were still intact. Results are discussed with respect to feeding strategies and contribution to carbon recycling.