Stable isotope signatures and methane use by New Zealand cold seep benthos

Citation:
Thurber, AR, Kroger K, Neira C, Wiklund H, Levin LA.  2010.  Stable isotope signatures and methane use by New Zealand cold seep benthos. Marine Geology. 272:260-269.

Date Published:

Jul

Keywords:

anaerobic oxidation, community structure, ecological significance, ecosystem engineer, fluid-flow, gulf-of-mexico, hydrate, hydrocarbon seep, macrobenthos, marine-invertebrates, methane seep, methane-derived carbon, methanotrophy, Pogonophora, ridge, spatial-distribution, tubeworm lamellibrachia-luymesi

Abstract:

The carbon isotopic composition of seep faunal tissue represents a time-integrated view of the interaction between biology and the biogeochemical gradients within the environment. Here we provide an initial description of carbon and nitrogen stable isotope signatures of dominant symbiont-bearing megafauna and heterotrophic mega- and macrofauna from 10 methane-seep sites on the continental margin of the North Island of New Zealand (662-1201 m water depth). Isotopic signatures suggest that sulfide oxidation supports symbiont-bearing taxa including solemyid and vesicomyid bivalves, and methanotrophic symbionts are present in the seep mussel Bathymodiolus sp Multiple species of Frenulata (Siboglinidae) are present and have a range of isotopic values that are indicative of both thiotroph- and methanotroph-based nutrition. Isotopic composition of the tubeworm Lamellibrachia sp. varied by 23 3 parts per thousand among individuals although there was no consistent difference among sites Variation in methane use by heterotrophic fauna appears to reflect the availability of hard vs. soft substrate, macrofauna on hard substrates had high delta(13)C signatures, reflecting consumption of photosynthetic-derived organic matter Two unique, biotic assemblages were discovered to be fueled largely by methane: a hard-substrate, multi-phyla sponge-associated community (inhabiting the sponge Pseudosuberites sp) and a soft-sediment assemblage dominated by ampharetid polychaetes Isotope signatures yield estimates of 38-100% and 6-100% methane-derived carbon in sponge associates and ampharetid-bed macrofauna. respectively. These estimates are comparable to those made for deeper methane seeps at the Florida Escarpment (3290 m) and Kodiak. Alaska seeps (4445 m) The overall high use of methane as a carbon source by both symbiont-bearing and heterotrophic fauna suggests that New Zealand methane seeps are an ideal model system to study the interaction among metazoans, bacteria, archaea, and their resulting effect on methane cycles. (C) 2009 Elsevier B V All rights reserved

Notes:

n/a

Website

DOI:

10.1016/j.margeo.2009.06.001