Export 6 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
Ziegler, LB, Constable CG.  2015.  Testing the geocentric axial dipole hypothesis using regional paleomagnetic intensity records from 0 to 300 ka. Earth and Planetary Science Letters. 423:48-56.   10.1016/j.epsl.2015.04.022   AbstractWebsite

Absolute and relative geomagnetic paleointensity records reveal variations in geomagnetic dipole strength, either via averaging time series of virtual axial dipole moments, or through formal inversion strategies like the penalized maximum likelihood (PML) method used for the PADM2M (Paleomagnetic Axial Dipole Moment for 0-2 Ma) model. However, departures from the most basic geocentric axial dipole (GAD) structure are obvious on centennial to millennial time scales, and paleomagnetic records from igneous rocks suggest small deviations persist on million year time scales. Spatial variations in heat flow at the core-mantle boundary (inferred from large low shear velocity provinces, LLSVPs) are widely suspected to influence both the average geomagnetic field and its regional secular variation. Long term departures from a GAD configuration should be visible from regional differences in paleointensity reconstructions. We use a PML method to construct time-varying models of regional axial dipole moment (RADMs) from a combined set of absolute and relative palebintensity data, and compare results from the last 300 kyr. RADMs are created from sediment records selected from specific latitude and longitude bands. We also test whether grouping records lying above each of the 2 major LLSVPs (centered on Africa and the Pacific) produce RADMs that are distinct from those above regions lacking anomalous seismic structure. Systematic differences appear in the various regional results. In the most recent part of the record regional differences are broadly similar to the Holocene, CALS10k.1b, time-varying geomagnetic field model spanning 0-10 ka. However, lack of Southern hemisphere records prevents direct confirmation of the hemispheric asymmetry present in CALS10k.1b in both average virtual axial dipole moment and its variability. As expected, the 300 kyr RADMs exhibit greater overall temporal field variability than is seen over 0-10 ka. Average RADM is higher in the Pacific and in Equatorial regions than in the Atlantic and in mid-high latitude northern hemisphere regions. Higher average RADMs are associated with lower overall field variability and less pronounced excursional signatures. Notably, the lower variability in the Pacific sector seen here (defined by either longitude band or LLSVP location) suggests that the modern low paleosecular variation there extends over at least the past few hundred thousand years. RADMs identified with LLSVPs show systematic deviations from the non-LLSVP group of records, with distinct characteristics for the African and Pacific provinces. The African LLSVP generates more pronounced RADM minima associated with geomagnetic excursions, and in general paleointensity decreases associated with excursions occur first in the Atlantic longitude sector and over the African LLSVP. (C) 2015 Elsevier B.V. All rights reserved.

Ziegler, LB, Constable CG, Johnson CL.  2008.  Testing the robustness and limitations of 0-1 Ma absolute paleointensity data. Physics of the Earth and Planetary Interiors. 170:34-45.   10.1016/j.pepi.2008.07.027   AbstractWebsite

Absolute paleomagnetic field intensity data derived from thermally magnetized lavas and archeological objects provide information about past geomagnetic field behavior, but the average field strength, its variability, and the expected statistical distribution of these observations remain uncertain despite growing data sets. We investigate these issues for the 0-1 Ma field using data compiled in Perrin and Schnepp [Perrin, M., Schnepp, E., 2004. IAGA paleointensity database: distribution and quality of the data set. Phys. Earth Planet. Int. 147, 255-267], 1124 samples of heterogeneous quality and with restricted temporal and spatial coverage. We accommodate variable spatial sampling by using virtual axial dipole moments (VADM) in our analyses. Uneven temporal sampling results in biased estimates for the mean field and its statistical distribution. We correct for these effects using a bootstrap technique, and find an average VADM of 7.26 +/- 0.14 x 10(22) A m(2). The associated statistical distribution appears bimodal with a subsidiary peak at approximately 5 x 10(22) A m(2). We evaluate a range of potential sources for this behavior. We find no visible evidence for contamination by poor quality data when considering author-supplied uncertainties in the 0-1 Ma data set. The influence of material type is assessed using independent data compilations to compare Holocene data from lava flows, submarine basaltic glass (SBG), and archeological objects. The comparison to SBG is inconclusive because of dating issues, but paleointensity estimates from lavas are on average about 10% higher than for archeological materials and show greater dispersion. Only limited tests of geographic sampling bias are possible. We compare the large number of 0-0.55 Ma Hawaiian data to the global data set with no definitive results. The possibility of over-representation of typically low intensity excursional data is discounted because exclusion of transitional data still leaves a bimodal distribution. No direct test has allowed us to rule out the idea that the observed pdf results from a mixture of two distinct distributions corresponding to two identifiable intensity states for the magnetic field. We investigate an alternative possibility that we were simply unable to recover a hypothetically smoother underlying distribution with a time span of only 1 Myr and the resolution of the current data set. Simulations from a stochastic model based on the geomagnetic field spectrum demonstrate that long period intensity variations can have a strong impact on the observed distributions and could plausibly explain the apparent bimodality. Our 0-1 Ma distribution of VADMs is consistent with that obtained for average relative paleointensity records derived from sediments. (C) 2008 Elsevier B.V. All rights reserved.

Johnson, CL, Constable CG.  1997.  The time-averaged geomagnetic field: global and regional biases for 0-5 Ma. Geophysical Journal International. 131:643-+.   10.1111/j.1365-246X.1997.tb06604.x   AbstractWebsite

Palaeodirectional data from lava flows and marine sediments provide information about the long-term structure and variability in the geomagnetic held. We present a detailed analysis of the internal consistency and reliability of global compilations of sediment and lava-flow data. Time-averaged field models are constructed for normal and reverse polarity periods for the past 5 Ma, using the combined data sets. Non-zonal models are required to satisfy the lava-flow data, but not those from sediments alone. This is in part because the sediment data are much noisier than those from lavas, but is also a consequence of the site distributions and the way that inclination data sample the geomagnetic field generated in the Earth's core. Different average held configurations for normal and reverse polarity periods are consistent with the palaeomagnetic directions; however, the differences are insignificant relative to the uncertainty in the average field models. Thus previous inferences of non-antipodal normal and reverse polarity field geometries will need to be re-examined using recently collected high-quality palaeomagnetic data. Our new models indicate that current global sediment and lava-flow data sets combined do not permit the unambiguous detection of northern hemisphere flux lobes in the 0-5 Ma time-averaged field, highlighting the need for the collection of additional high-latitude palaeomagnetic data. Anomalous time-averaged held structure is seen in the Pacific hemisphere centred just south of Hawaii. The location of the anomaly coincides with heterogeneities in the lower mantle inferred from seismological data. The seismic observations can be partly explained by lateral temperature variations; however, they also suggest the presence of lateral compositional variations and/or the presence of partial melt. The role of such heterogeneities in influencing the geomagnetic held observed at the Earth's surface remains an unresolved issue, requiring higher-resolution time-averaged geomagnetic field models, along with the integration of future results from seismology, mineral physics and numerical simulations.

Johnson, CL, Constable CG.  1995.  The Time-Averaged Geomagnetic-Field As Recorded By Lava Flows Over The Past 5 Million-Years. Geophysical Journal International. 122:489-519.   10.1111/j.1365-246X.1995.tb07010.x   AbstractWebsite

A recently compiled lava flow data base spanning the last 5 million years is used to investigate properties of the time-averaged geomagnetic field. More than 90 per cent of the power in the palaeofield can be accounted for by a geocentric axial dipole; however, there are significant second-order structures in the held. Declination and inclination anomalies for the new data base indicate that the main second-order signal is the 'far-sided' effect, and there is also evidence for non-zonal structure. VGP (virtual geomagnetic pole) latitude distributions indicate that, over the last 5 million years, normal and reverse polarity morphologies are different, and that any changes in the normal polarity field morphology are undetectable, given the present data distribution. Regularized non-linear inversions of the palaeomagnetic directions support all these observations. We test the hypothesis that zonal models for the time-averaged field are adequate to describe the data and find that they are not. Non-zonal models are needed to fit the data to within the required tolerance level. Normal and reverse polarity held models obtained are significantly different. Field models obtained for the Brunhes epoch data alone are much smoother than those obtained from combining an the normal polarity data; simulations indicate that these differences can be explained by the less extensive data distribution for the Brunhes epoch. The field model for all of the normal polarity data (LN1) contains features observed in the historical field maps, although the details differ. LN1 suggests that, although the two northern hemisphere flux lobes observed in the historical field are stationary to a first-order approximation, they do show changes in position and amplitude. A. third, less pronounced flux lobe is observed in LN1 over central Europe. The lack of structure ih the southern hemisphere is due in part to the paucity of data. Jackknife estimates of the field models for different subsets of the data suggest that a few sites contribute significant structure to the final field models. More conservative estimates of the time-averaged field morphology are obtained by removing these sites.

Amit, H, Korte M, Aubert J, Constable C, Hulot G.  2011.  The time-dependence of intense archeomagnetic flux patches. Journal of Geophysical Research-Solid Earth. 116   10.1029/2011jb008538   AbstractWebsite

The long-term temporal behavior of intense geomagnetic flux patches at the core-mantle boundary and the relation with lower mantle lateral heterogeneity are under debate. We apply an algorithm to detect centers of intense flux patches and track their time-evolution in a recent archeomagnetic field model in order to study the kinematics of such intense magnetic flux patches on millennial timescale. We find that most intense flux patches appear near the edge of the tangent cylinder. Quasi-stationary periods with small oscillations of patches occur more than drifts. Detailed comparison of the archeomagnetic patches' behavior with that seen in numerical dynamos with tomographic heat flux boundary conditions suggests that core-mantle thermal coupling could be the cause of a statistical preference for some longitudes on the long term, which does not exclude significant time spent away from the preferred longitudes. This could explain the roughly coincident locations of high-latitude patches in the historical geomagnetic field with that of the time-average paleomagnetic field together with the much weaker patches intensity in the latter. Alternating eastward and westward drifts are also observed. The drifts are more westward than eastward, especially in the southern hemisphere, indicating that the time-average zonal core flow may also be driven by core-mantle thermal coupling. An average patch lifetime of similar to 300 years is found, which we hypothesize may indicate the vortex lifetime in the outer core.

Constable, C, Tauxe L.  1996.  Towards absolute calibration of sedimentary paleointensity records. Earth and Planetary Science Letters. 143:269-274.   10.1016/0012-821x(96)00128-8   AbstractWebsite

Using relative paleointensity estimates derived from twelve globally distributed pelagic sediment cores, we assess whether they record a signal consistent with that expected from a dominant geocentric axial dipole, The cores span the Matuyama-Brunhes boundary and we normalize the observations by supposing that at the time the direction reverses the intensity low reflects only the non-axial-dipole contribution to the field. We further assume that this non-axial-dipole contribution to the field is invariant with geographic location. From absolute paleointensity compilations we estimate its size to be about 7.5 mu T; this supplies the calibration for the axial dipole signal away from the extreme low in intensity, The data predict the dipole field variation with latitude with similar accuracy to that observed in absolute paleointensity records, and show similar behavior when transformed to virtual axial dipole moments.