Publications

Export 6 results:
Sort by: Author [ Title  (Desc)] Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Korte, M, Constable C.  2003.  Continuous global geomagnetic field models for the past 3000 years. Physics of the Earth and Planetary Interiors. 140:73-89.   10.1016/j.pepi.2003.07.013   AbstractWebsite

Several global geomagnetic field models exist for recent decades, but due to limited data availability models for several centuries to millennia are rare. We present a continuous spherical harmonic model for almost 3 millennia from 1000 B.C. to 1800 A.D., based on a dataset of directional archaeo- and paleomagnetic data and axial dipole constraints. The model, named Continuous Archaeomagnetic and Lake Sediment Geomagnetic Model for the last 3k years (CALS3K.1), can be used to predict both the field and secular variation. Comparisons and tests with synthetic data lead to the conclusion that CALS3K.1 gives a good general, large-scale representation of the geomagnetic field, but lacks small-scale structure due to the limited resolution of the sparse dataset. In future applications the model can be used for comparisons with additional, new data for that time span. For better resolved regions, the agreement of data with CALS3K.1 will provide an idea about the general compatibility of the data with the field and secular variation in that region of the world. For poorly covered regions and time intervals we hope to iteratively improve the model by comparisons with and inclusion of new data. Animations and additional snapshot plots of model predictions as well as the model coefficients and a FORTRAN code to evaluate them for any time can be accessed under http://www.mahi.ucsd.edu/cathy/Holocene/holocene.html. The whole package is also stored in the Earthref digital archive at http://www.earthref.org/... (C) 2003 Elsevier B.V. All rights reserved.

Korte, M, Constable CG.  2005.  Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K. Geochemistry Geophysics Geosystems. 6   10.1029/2004gc000801   AbstractWebsite

We present two continuous global geomagnetic field models for recent millennia: CALS3K.2, covering the past 3000 years, and CALS7K.2, covering 7000 years from 5000 BC to 1950 AD. The models were determined by regularized least squares inversion of archeomagnetic and paleomagnetic data using spherical harmonics in space and cubic B splines in time. They are derived from a greatly increased number of paleomagnetic directional data, compared to previous efforts, and for the first time a significant amount of archeointensity data is used in this kind of global model, allowing the determination of evolution of geomagnetic dipole strength. While data accuracy and dating uncertainties remain a limitation, reliable low-resolution global models can be obtained. The results agree well with previous results from virtual axial dipole moment (VADM) studies from archeomagnetic intensity data apart from a systematic offset in strength. A comparison of model predictions with the previous 3000 year model, CALS3K.1, gives general agreement but also some significant differences particularly for the early epochs. The new models suggest that the prominent two northern hemisphere flux lobes are more stationary than CALS3K.1 implied, extending considerably the time span of stationary flux lobes observed in historical models. Between 5000 BC and 2000 BC there are time intervals of weak dipole moment where dipole power is exceeded by low-degree nondipole power at the core-mantle boundary.

Korte, M, Genevey A, Constable CG, Frank U, Schnepp E.  2005.  Continuous geomagnetic field models for the past 7 millennia: 1. A new global data compilation. Geochemistry Geophysics Geosystems. 6   10.1029/2004gc000800   AbstractWebsite

A global data set of archeomagnetic and paleomagnetic data covering the past 7000 years has been compiled. It consists of 16,085 results of inclination, 13,080 of declination, and 3188 of intensity for the time span 5000 BC to 1950 AD. Declination and inclination data come partly from existing databases and partly from original literature. A new global compilation of intensity data for the millennial scale is included. Data and dating uncertainties are discussed as we attempted to obtain an internally coherent data set. The global distribution of the data is very inhomogeneous in both time and space. All the data are compared to predictions from the previous 3000 year global model, CALS3K.1. This collection of data will be useful for global secular variation studies and geomagnetic field modeling, although southern hemisphere data are still underrepresented. In particular, we will use it in a further study to update and extend the existing global model, CALS3K.1. The huge increase in data compared to the previous compilation will result in significant changes from current models. As we might have missed some suitable data, we encourage the reader to notify us about any data that have not been included yet and might fit in, as improving our global millennial scale models remains our aim for the future.

Smith-Boughner, LT, Ziegler LB, Constable CG.  2011.  Changing spectrum of geomagnetic intensity variations in a fragmented 12 My sediment record from the Oligocene. Physics of the Earth and Planetary Interiors. 188:260-269.   10.1016/j.pepi.2011.07.011   AbstractWebsite

Time series of relative geomagnetic paleointensity variations derived from marine sediments can be calibrated using absolute data derived from igneous materials. The resulting records may be suitable for spectral analysis of geomagnetic dipole variations. This work re-evaluates the 12 My (22.74-34.77 Ma) sediment record from Deep Sea Drilling Project Leg 73, Site 522, that is a key data set for determining the paleomagnetic power spectrum in the frequency range 1-100 My(-1). The 12 My record is marred by uneven sampling, with the interval between samples ranging from 1 to 640 ky, and contains several gaps that are considered too long to interpolate. The relative intensity data are calibrated using 129 globally distributed absolute paleointensity data from the same time interval. The power spectrum of the resulting time series is estimated using direct multi-taper spectral estimation with prolate data tapers adapted to deal with missing sections in the time series. The longest record available for analysis is thereby extended from 5.3 to 12 My. The new paleomagnetic power spectrum confirms the presence of a broad spectral peak at around 8 My(-1) for the early Oligocene and uncovers a peak around 2.5 My(-1) in the late Oligocene. Both peaks may be linked to tiny wiggles in marine magnetic anomalies. The new analysis unambiguously verifies that there is lower overall power in the younger part of the record, where the reversal process appears to dominate the power spectrum of the paleosecular variation. A comparison of the late Oligocene spectrum with that of PADM2M, a model of paleomagnetic axial dipole variations for 0-2 Ma, reveals some broad similarities; both time periods have similar power levels and a reversal rate of 4 My(-1). During the early Oligocene the reversal rate is about a factor of two lower, the field strength is higher, and the secular variation is stronger, suggesting that a strong magnetic field inhibits reversals but produces more variability in field strength. (C) 2011 Elsevier B.V. All rights reserved.

Constable, CG.  2007.  Centennial to millennial-scale geomagnetic field variations. Treatise on geophysics. 5( Kono M, Schubert G, Eds.).:337-372., Amsterdam ; Boston: Elsevier Abstract
n/a
Korte, M, Constable CG.  2006.  Centennial to millennial geomagnetic secular variation. Geophysical Journal International. 167:43-52.   10.1111/j.1365-246X.2006.03088.x   AbstractWebsite

A time-varying spherical harmonic model of the palaeomagnetic field for 0-7 ka is used to investigate large-scale global geomagnetic secular variation on centennial to millennial scales. We study dipole moment evolution over the past 7 kyr, and estimate its rate of change using the Gauss coefficients of degree 1 (dipole coefficients) from the CALS7K.2 field model and by two alternative methods that confirm the robustness of the predicted variations. All methods show substantial dipole moment variation on timescales ranging from centennial to millennial. The dipole moment from CALS7K.2 has the best resolution and is able to resolve the general decrease in dipole moment seen in historical observations since about 1830. The currently observed rate of dipole decay is underestimated by CALS7K.2, but is still not extraordinarily strong in comparison to the rates of change shown by the model over the whole 7 kyr interval. Truly continuous phases of dipole decrease or increase are decadal to centennial in length rather than longer-term features. The general large-scale secular variation shows substantial changes in power in higher spherical harmonic degrees on similar timescales to the dipole. Comparisons are made between statistical variations calculated directly from CALS7K.2 and longer-term palaeosecular variation models: CALS7K.2 has lower overall variance in the dipole and quadrupole terms, but exhibits an imbalance between dispersion in g(2)(1) and h(2)(1), suggestive of long-term non-zonal structure in the secular variations.